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Abstract

Up-scaling snow models has proven to be challenging. A new way of scaling snow simulations

could lie in the use of cluster information on snow dynamics. A model calibrated on a small

scale could later be up-scaled to wider areas exhibiting the same patterns in snow distribution.

Coupled with soil routines this approach could lead to more precise runoff predictions and thereby

improve spring-floods and droughts forecasts. For first tests on clustered snow data a snow module

is developed for subsequent integration into the Run off Generation Research (RoGeR) program.

Model testing is performed with spatially clustered Snow Water Equivalent (SWE) data aiming to

reduce model complexity and input parameter count, as well as boosting simulation efficiency. The

model’s input requirements were streamlined to the most essential components. A straightforward

model structure was formulated, employing a dual degree-day-factor (DDF) approach alongside a

threshold-based separation for temperature and precipitation. One layer of canopy is simulated.

Furthermore, the model incorporates routines for liquid water, refreezing processes, sublimation and

Rain on Snow (ROS)-events. The input parameters were set in reasonable boundaries, accurately

representing the underlying physical processes. Overall, the model has exhibited commendable

performance with only short periods of calibration data. The quality of the outputs is dependent

on the resolution of input temperature data. Accumulation and melt rates match the observed

SWE when the lack of sublimation in the reference data is accounted for. Annual sublimation and

refreezing values match those in literature. The canopy-layer algorithm performs well predicting

95% of the snow hours in south facing canopy correctly. Challenges are faced when simulating

ROS-events in forested and open exposed clusters. Future work should include testing with new

seasons of input data for the modelled clusters and other clusters in more advanced stages. Later,

the model has to prove its structural efficiency while integrating into RoGeR.

Key words: Snow, SWE, RoGeR, Cluster, Model
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Zusammenfassung

Die Probleme in der Anwendung von Schneemodellen auf große Flächen sind momentaner Gegen-

stand der Forschung. Eine neue Möglichkeit zur Skalierung von Schneemodellen könnte in der Ver-

wendung von Cluster-Informationen liegen. Ein auf kleinem Maßstab kalibriertes Modell könnte

später auf größere Gebiete mit ähnlichen Schneeverteilungsmustern hochskaliert werden. In Kom-

bination mit Bodenwassermodellen könnte dieser Ansatz zu präziseren Vorhersagen von Abflüssen

führen und somit die Vorhersagen für Hochwasser und Dürre verbessern. Ein Schneemodul zur

späteren Integration in RoGeR wurde entwickelt. Kalibrierung und Validierung erfolgte anhand

von räumlich gruppierten Daten zur Schnee-Wassermenge (SWE), um die Modellkomplexität und

die Anzahl der Eingangsparameter zu reduzieren und die Simulationseffizienz zu steigern. Die Ein-

gangsanforderungen des Modells wurden auf die wesentlichen Komponenten beschränkt. Es wird

eine einfache Modellstruktur formuliert, die einen dualen Grad-Tag-Faktor(DDF)-Ansatz neben

einer schwellenbasierten Trennung für Niederschlag verwendet. Zusätzlich zur Bodenschneedecke

wird die Schneemenge im Blätterdach simuliert. Darüber hinaus enthält das Modell Routinen für

flüssiges Wasser, Wiedergefrierungsprozesse, Sublimation und Regen auf Schnee (ROS)-Ereignisse.

Die Eingangsparameter wurden in Grenzen festgelegt, die die zugrunde liegenden physikalischen

Prozesse abbilden. Insgesamt zeigt das Modell gute Leistung mit nur kurzen Kalibrierungszeitrei-

hen. Die Qualität der Ergebnisse hängt von der Auflösung der Eingangstemperaturdaten ab. Die

Akkumulations- und Schmelzraten stimmen mit der beobachteten SWE überein, wenn der Man-

gel an Sublimation in den Referenzdaten berücksichtigt wird. Die jährlichen Sublimations- und

Wiedergefrierungswerte entsprechen denen in der Literatur. Der Algorithmus für die Schneeschicht

in Bäumen liefert gute Ergebnisse und kann 95 % der Schnee-Stunden in südlich ausgerichteten

Baumbeständen korrekt vorhersagen. Herausforderungen ergeben sich bei der Simulation von ROS-

Ereignissen in bewaldeten und exponierten Clustern. Zukünftige Arbeiten sollten Tests mit neuen

Wintern für die modellierten Cluster und anderen Clustern in fortgeschritteneren Stadien ein-

schließen. Später soll das Modell auf seine strukturelle Kompatibilität bei der Integration in RoGeR

getestet werden.

Schlüsselwörter: Schnee, SWE, RoGeR, Cluster, Modell
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1 Introduction

1.1 Relevance of Snow Modelling on Different Scales

Snow processes play a crucial role in the hydrological cycle, impacting various aspects of the

environment. Snow models have been developed to quantify and predict these processes. This

is essential for understanding and adapting to the changing climate on various spatial scales.

On a scale of small to medium sized catchments, sudden snow melts induced by rain are a major

cause of spring floods. The frequency of flood events caused by rain on snow in the European Alps

has been increasing over the last decades. Accurate prediction of rain on snow events is vital for

effective flood management and mitigation of the emerging risks (Garvelmann 2014; Beniston and

Stoffel 2016).

In large catchments insufficient snowfall and premature snow melt have led to severe summer

droughts in Europe. This is exemplified by the 2022 drought across the Po river basin in northern

Italy. Such events are becoming more common, emphasizing the need to quantify water deficits, and

implementing effective countermeasures (Iglesias, Assimacopoulos, and Van Lanen 2018) (Toreti et

al. 2022).

Those phenomena are linked to a changing climate. Globally the duration of snow cover influences

the Earth’s albedo, providing a direct counterbalance to global warming. Other climate tipping

points are related to snow dynamics. This is exemplified by the snow coverage’s influence on the

CO2 emissions of vast areas of permafrost soils, indirectly reducing the greenhouse effect (Jorgenson

et al. 2010) (Natali et al. 2019).

1.2 Modelling Snow Processes

Various processes are included in state-of-the-art physically-based snow modules to match reality

as close as possible:

Distinction between liquid and solid precepitation can be made by using a threshold temperature.

A meta-analysis of a comprehensive 29-year observational dataset reveals substantial variations

in the air temperature at which rain and snow occur with equal frequency across the Northern

Hemisphere. On average, this temperature stands at 1.0°C, but it exhibits a considerable range
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from -0.4°C to 2.4°C for 95% of the monitoring stations (Jennings et al. 2018).

A more advanced way of identifying snowfall is a Wet-Bulb-Temperature approach. In addition

to temperature and precipitation, relative humidity is needed for this calculation. This method

of solid-liquid precipitation separation performs superior to the threshold temperature approach

overall (Behrangi et al. 2018).

Fresh fallen snow differs in its physical properties. For the estimation of fresh snow density various

methods exist, using air-temperature and wind speed as input data (Hedstrom and Pomeroy 1998)

(Jordan, Andreas, and Makshtas 1999) (Davidov et al. 2004). The empirically-based approach

after Hedstrom using only air temperature for fresh snow density calculation has been shown to

perform well under various conditions (Zhibang and Pomeroy 2020).

Fresh snow is intercepted in canopy when present. The amount of interception during a snow event

is dependent on the fresh snow density, the maximal amount of intercepted snow, the initial amount

of intercepted snow, the Leaf Area Index (LAI), the canopy-coverage, the canopy-height and lastly

wind-speed and wind-direction. A widely used approach for modelling interception for boreal

forests, using most of the named influencing factors as input parameters is available (Hedstrom

and Pomeroy 1998). A more simplistic way of calculating interception was used in the ITree-Hydro

model (Yang, Endreny, and Nowak 2011): The percentage of snow which is intercepted by the

canopy is calculated by an exponential term including the LAI and an extinction coefficient in the

exponent. This calculation was transferred from liquid precipitation interception modelling.

Intercepted snow is unloaded from canopy due to wind and changes in the structure of the inter-

cepted snow, dependent on temperature and radiation. This process is often modelled using an

exponential decay of the interception snow storage, determined by an unloading coefficient (Hed-

strom and Pomeroy 1998). Approaches including temperature or radiation-balance components are

present in the literature (Mahat and Tarboton 2014) (Förster et al. 2018) as well.

Besides unloading, snow is also removed from canopy by sublimation. Up to 30% of fallen SWE

was reported to be returned to the atmosphere by sublimation in boreal forest (J. W. Pomeroy

and Schmidt 1993). Other sources report values from 36.4% to 80.7% for more arid climates

(Voordendag et al. 2021). This process is dependent on windspeed, relative humidity, radiation,

temperature, air pressure, physical parameters of the canopy snow layer and structural canopy

parameters such as height, LAI and canopy coverage. For calculation an energy balance of the

canopy snow layer is set up in order to determine the amount of energy available for sublimation
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(J. Pomeroy et al. 1998) (Mahat and Tarboton 2014). For calculating the amount of incoming

short-wave radiation absorbed by the snow layer, an algorithm for albedo calculation is required.

The formation of rime ice is a canopy process that was only recently described for the first time

(Lumbrazo et al. 2022). Rime ice is created when powerful winds transport supercooled water

droplets from clouds causing them to accumulate on surfaces. Typically, rime formation takes

place under specific conditions, including high wind speeds, elevated humidity levels, and air tem-

peratures ranging between -2°C and -8°C (Whiteman and Garibotti 2013). The magnitude of

the impact on intercepted snow is still to be evaluated. Furthermore the canopy modifies various

parameters important for snow modelling. Windspeed in the canopy is reduced. Shading effects

modify radiation heterogeneously. Snow is distributed unevenly due to spatial patterns in the

canopy layer (Zheng et al. 2018).

Modelling of melt for the canopy and ground snow cover follows the same principles for canopy

and ground, with modifications as described when canopy is present. Two basic approaches can

be distinguished: A DDF-method and an energy balance calculation. The degree-day method

calculates melt based on a factor determining how much snow is melted dependent on temperature

above zero degrees Celsius per day. This calculation is used in many models due to its simplicity.

One of the most prominent members of this group is the NORDIC HBV model (Saelthun 1996).

Energy balance models calculate the energy fluxes within the snow layer and on its surface. The

first part of the energy balance is radiation. Therefore, data for incoming shortwave radiation is

needed. Reflected shortwave radiation is calculated based on a modelled albedo for the snow surface.

Longwave radiation can be determined by atmospheric and snow temperature. The second part is

heat fluxes on the surface of the snow layer. Heat is conducted from or to the soil. For modelling, soil

temperature and a heat conductivity calculation within the soil (dependent on water content and

density) are needed. On the upper surface heat is exchanged with the atmosphere. Turbulent heat

exchange prediction additionally needs windspeed, air pressure and relative humidity. Latent heat

is transported due to sublimation and freezing processes on the surface of the snow layer. Finally

falling rain adds energy to the snow cover depending on its temperature. An algorithm able to

perform all these calculations is the FSM model (Essery 2015). The Snow Model Intercomparison

(SNOW-MIP) meta study evaluated the degree-day method as well as the energy balance method

(Krinner et al. 2018; Essery et al. 2009; Etchevers et al. 2004). Model performance was not

dependent on the chosen melt-modelling approach.
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Melting water and rainwater are stored in the snow cover to a certain extent. Values for the

maximum liquid water storage found in literature reach from 4 % (Koch et al. 2014) to over 6%

(Mitterer et al. 2011) (of SWE). The holding capacity depends on the physical properties of the

snow layer. Simpler modelling approaches fix the maximum liquid storage to a certain fraction of

the SWE. For example, the Nordic HBV model uses a value of 8% (Saelthun 1996). The stored

liquid water is refrozen when temperatures drop below freezing. This can be estimated using a

method like the DDF called refreezing efficiency. A fraction of liquid water refreezes. The amount

is depending on the refreezing efficiency multiplied with the DDF and the value of temperature

below zero. For precise modelling a temperature calculation for the snow cover is necessary. This

is already present within most energy-based models. Field studies for quantifying refreezing were

mostly conducted on glaciers and in arctic regions. On the Greenlandic ice shield, more than 50%

(Cox, Humphrey, and Harper 2015) of melt water is retained and refrozen in the firn layer. For

moderate climates no estimates for refreezing could be retrieved. Overall water content is of great

importance when forecasting flash floods caused by rain on snow events (Li et al. 2019) and in

avalanche forecasting. For avalanche risk evaluation, complex 3D models with multiple snow layers

have been developed. An example is the Alpine 3D model, developed by the Swiss WSL-Institute

for Snow and Avalanche Research SLF (Lehning et al. 1999).

This model is also able to handle snow drift calculations. Therefore, a high resolution digital-

elevation-model in combination with an algorithm for small scale modelling of windspeeds is

needed.

Overall, many snow processes can be modelled with a pool of input parameters to choose from.

Model complexity depends on the parameters chosen and on the selection of processes modelled.

Both decisions are depending on the desired model application. The availability of input data

determines the amount of the processes the model is able to simulate.

1.3 Comparison of Snow Models with Different Complexities

The issue at hand is: What level of complexity is necessary to accurately describe the relevant

snow processes? Some models adopt simpler approaches that do not explicitly consider vegetation

processes. As part of the Project for the Inter-comparison of Land Surface Parametrization Schemes

(PILPS) (A. Henderson-Sellers et al. 1995), an initial examination of various snow models was

conducted. The PILPS 2(d) Project evaluated 21 snow models using an 18-year dataset from
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a grassland catchment in Russia. The results revealed significant variation among the models,

particularly during the early snow season and ablation events. This discrepancy was attributed to

the diverse energy distribution among the snow-covered grid cells under low-SWE conditions. Biases

established early in the snow season persisted due to internal feedback processes or independent

snowfall events (Slater et al. 2001). At that time, including vegetation influences was still deemed

necessary.

Two years later, the SnowMIP project was initiated (Etchevers et al. 2004) with the goal of devel-

oping a methodology for comparing different snow models. The project focused on mountainous

catchments in the Alps but did not consider vegetation patterns. The project emphasized the

importance of accurately calculating albedo, as it significantly affects radiation balance. Many of

the 23 surveyed models encountered challenges in precisely determining the available energy in the

snow cover due to the albedo calculation.

Six years later, the project was repeated to evaluate model performances in forested catchments

(Essery et al. 2009). A wide range of snow models was tested across three forested catchments

at altitudes ranging from 579 to 2820 meters. The complexity of the models varied, from simply

reducing snowfall due to vegetation to a 10-layer interception snow model. All 33 models performed

well in predicting the duration of snow cover but struggled to accurately model maximum snow

accumulation. Specifically, they underestimated the differences between forested and non-forested

sites, particularly in warmer winters. However, improvements were noted in albedo calculations.

Overall, the study concluded that uncertainties in parameter selection are more important than

deficiencies in model structure in the absence of calibration data (Essery et al. 2009). It was

suggested that snow models should be tested on a larger scale.

The most recent assessment of snow models, ESM-SnowMIP (Krinner et al. 2018), addressed

the need to bridge the gap between research groups, focused on small-scale snow modelling, and

researchers in earth system modelling. The study aimed to establish standardized experiments for

comparing snow models.

The study concluded: there are problems due to error accumulation in snow modules. This is

especially true for warmer winters. Canopy modelling is still challenging, and uncalibrated models

still do not perform well. The model quality hugely depends on the selection of input parameters.
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1.4 A Way to Reduce Model Complexity - Clustering in Snow Modelling

Currently, research is conducted in up-scaling hyper-scale models to improve snow modelling effi-

ciency. That involves the utilization of intricate energy balance models. Good results have been

achieved using the FSM (Mazzotti, Essery, Webster, et al. 2020; Mazzotti, Essery, Moeser, et al.

2020). The process of up-scaling these models has proven to be quite challenging (Mazzotti et al.

2021). Aiming to solve these problems in snow modelling, a new way of snow depth calculation

in clusters was proposed by Geissler, Rathmann, and Weiler (2023). This work is mainly based

on the data generated in that study. High resolution LiDAR snow depth maps (HS-maps) and

a network of Snow Monitoring Stations (SnoMoS) (Garvelmann 2014) at a sub-alpine test site in

Switzerland were evaluated. Four clusters of snow depth could be identified: Open shaded, open

exposed, open intermediate and forested. Eventually those clusters could be derived from satellite

data. If modelling those clusters is more efficient than modelling whole country sights a huge step

in snow modelling can be made. Modelling clusters instead of grid cells reduces the model-runtime

significantly. Furthermore, relevant processes could be chosen individually for each cluster. There-

fore, model complexity could be reduced to the amount necessary for each cluster. Potentially this

leads to fewer input parameters. Parameters for vegetation and topography are available on small

experimental sites. The same is true for high-resolution climate data. The lack of such data on a

global scale poses a significant challenge when integrating snow models into Earth System Models

(ESM). This integration is crucial for generating accurate snow cover predictions and assessing

the impact of climate change on melting ice sheets, glaciers, and snowfall (Krinner et al. 2018).

Together these achievements (fewer input data, simpler parametrisation, lower computation times

due to simpler model designs) could help with up scaling the model to wider areas and improving

model results of snow models.
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1.5 The RoGeR Model - A short Introduction

To address the introductory application areas of snow modelling, snow modules are often coupled

with runoff-generation modules. Available for this work is the RoGeR model. Input parameters are

time series for precipitation temperature, potential evapotranspiration and incoming short wave

radiation in some variants.

To estimate flood and drought events, runoff generation modelling is necessary. RoGeR simulates

runoff formation with high temporal resolution based on physical principles. The drainage compo-

nents considered include Hortonian surface runoff, rapid interflow through preferential flow paths,

slow interflow through the soil matrix, surface runoff on saturated areas, and deep percolation into

groundwater. The model captures the infiltration process through the soil and accounts for infiltra-

tion through macropores and dry cracks. The event-based runoff generation models of RoGeR can

be applied at any time step. The water balance models adjust the time step between ten minutes,

one hour, and one day during the model run, depending on the rainfall intensity. This ensures

that the effects of short-term high intensities are considered even for model runs spanning several

years. For low intensities, an hourly time step is sufficient, and if there is no rainfall, calculations

are performed daily (Steinbrich, Weiler, and Leistert 2021).

For drainage concentration modelling, two alternative methods are available. The first is a geomor-

phological unit hydrograph approach. This involves deriving a unit hydrograph for each of the three

components: surface runoff, interflow, and deep percolation (groundwater runoff). This allows for

the derivation of a hydrograph for each component at any point in the catchment. The second

approach is modelling the concentration of surface runoff and interflow dynamically. This consid-

ers both the falling rainfall and the laterally inflowing water at each time step in the infiltration

modelling. For surface runoff, a 2-D explicit method is used to solve the diffusive wave equation in

combination with the Manning-Strickler equation. A similar approach is applied to interflow, but

in combination with Darcy flow and preferential lateral interflow. For each cell, the water available

locally for interflow formation from the soil and the laterally inflowing water are considered. In dy-

namic modelling, it is no longer possible to differentiate between the various drainage components

at the gauge. Especially during short intense rainfall events, the infiltration of surface runoff along

the flow path has a significant impact compared to the unit hydrograph approach. Since more

water infiltrates overall, the resulting drainage response at the gauge is weaker. In recent tests,
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the dynamic modelling showed a reduction in drainage compared to the unit hydrograph approach

ranging from 15 to 75% at the gauge (Steinbrich, Weiler, and Leistert 2021).

RoGeR is able to consider the evaporation from water surfaces, interception storage in the tree

canopy as well as separately from the shrub and grass layers (including areas under canopy) and

from the soil itself. The potential evaporation, defined as a daily input, is reduced based on water

availability and shortwave radiation. The potential evaporation is available in two layers in the

model: at the ground- and in the grass- and shrub- layers as well as in the tree layer. This allows

for the possibility of actual evaporation being higher than the potential evaporation. The radiation

input can be reduced due to shading, which can be considered in the raster-based model versions

using shading grids that vary with the seasons (Steinbrich, Weiler, and Leistert 2021).

Soil water storage is defined by the parameters field capacity, air capacity, drainable porosity,

and permanent wilting point. The soil is divided into the root zone and the soil below the root

zone. Evaporation from the soil only occurs from the root zone. There is an exchange of water

between the two soil zones based on the matrix potential. Water can be released from the subsoil

to the underlying geological layer (deep percolation) depending on the water content. This water

corresponds to groundwater recharge. Capillary rise is also possible at high groundwater levels. If

the field capacity is exceeded, a saturated zone can develop above it, depending on the permeability

of the geological substrate. Interflow occurs in this zone. The amount of interflow depends on the

lateral permeability of the soil at the base, the depth of the soil, and the slope. Preferential lateral

flow paths in this zone are parameterized in RoGeR based on land use and soil skeleton content

(Steinbrich, Weiler, and Leistert 2021).
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1.6 Development-Process: A new Snow Model for RoGeR

In the pursuit of developing a snow module that seamlessly integrates into the RoGeR program,

several significant factors become prominent. This study aims to clarify the essential elements

required for constructing an effective snow module for RoGeR, emphasizing efficiency and practical

usefulness. At the core of this research lies the vital role of thorough documentation, which not

only aids in current understanding but also establishes the foundation for future collaboration and

integration.

An important aspect of concern involves managing external dependencies. This calls for a selective

integration of external tools to ensure alignment with RoGeR’s overarching framework. Moreover,

leveraging RoGeR’s existing input data – including temperature, precipitation, and evapotranspi-

ration – forms a foundational element in this endeavour. The goal is to harmoniously incorporate

this data into the snow module, creating a coherent relationship with RoGeR’s inherent operational

structures.

Most importantly RoGeR uses variable time stepping. Therefore the model has to incorporate this

feature in order to run alongside RoGeR. This adaptable temporal resolution not only enhances

the module’s flexibility, but also broadens its applicability across diverse environmental scenarios.

Testing the model with different temporal resolutions will help with the fine tuning of RoGeR’s

time-stepping routine later on.

Furthermore, the meticulous creation and provision of comprehensive model output data hold sig-

nificant importance, guaranteeing the availability of an extensive dataset for subsequent analytical

insights.

A central focus of this research pertains to the systematic establishment and documentation of an

interface facilitating seamless data exchange between the snow module and RoGeR. In principle

the snow module should be operable with other runoff-generation models trough the interface.

The last aspect revolves around aligning the structural design of the snow module with RoGeR’s

fundamental computational paradigm, characterized by its iterative ‘for-loop’ architecture. This

alignment streamlines the incorporation of the snow module’s functionalities within RoGeR’s iter-

ative framework, resulting in a cohesive and synergistic simulation framework.
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In summary, this study aims to break down the complex landscape underpinning the development

of a snow module for RoGeR, with a strong focus on detailed documentation, prudent selection of

tools, seamless data integration, adaptive time resolution, comprehensive output provision, interface

management, and structural alignment.

1.7 Research Question

The objectives of this master’s thesis are twofold: firstly, to undertake the development of an

efficient snow module for the RoGeR program. This entails a comprehensive consideration of

key factors, including modular integration, minimal external dependencies, effective utilization of

available RoGeR input data (temperature, precipitation, evapotranspiration), dynamic temporal

resolution, and robust data output provisions.

Secondly, this research seeks to evaluate the newly developed snow module using clustered sample

data derived from the two year Geissler, Rathmann, and Weiler (2023) dataset. This research should

focus on the differences in snow processes in between the clusters. Furthermore, an assessment of

the potential disadvantages of modelling with daily temperature inputs should be conducted.

By achieving these two goals, this work aims to make contributions towards an advancement of

both the RoGeR program and the broader field of snow modelling.
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2 Methods

2.1 The Alptal Test Site

The test site is located on a hillside of the Alptal valley in Switzerland. Situated at geographical

coordinates 47.044380, 8.712755 (EPSG:3857), the test site is forested by a mixed composition of

spruce and fir trees. Exhibiting an LAI ranging from 4 to 5 m2/m2 the test site canopy reaches

heights of up to 35 m with a mean canopy coverage of 35%. The test side is orientated no-break

space, encompassing an azimuthal range from 211° to 296°. Topographically, the undulating terrain

showcases slopes ranging from 11° to 25°. The elevation of the test site spans from 1160 meters to

1240 meters above mean sea level (m.a.s.l.). The whole test site covers an area of approximately

0.23 km2 (Geissler, Rathmann, and Weiler 2023).

2.2 Spatial Cluster Data

Daily SWE raster stack data were obtained from the FreiDok Repository (https://doi.org/10.

6094/UNIFR/232647). For creating the data set an unmanned aerial vehicle (UAV) equipped

with a VLP16 Puck Lite multi-beam LiDAR sensor and an inertial navigation system was used

to carry out aerial surveys to collect data on snow depth and SWE in the study area. The UAV

surveys were carried out throughout the seasons, allowing for the measurement of snow depth

during different stages of the snowpack. The collected LiDAR data was processed to generate

high-resolution snow-depth maps (HS-maps) of the snow-covered area . To fill the data gaps in

the LiDAR surveys, data imputation was used. The UAV surveys were complemented by manual

snow surveys, where snow depth and SWE measurements were taken along transects within the

study area. Additionally, the LiDAR data were supplemented with data of a dense sensor network

of automatic Snow Measuring Stations (SnoMoS). The k-means clustering algorithm was used to

detect clusters in a randomly chosen subset of the HS-maps data, which were then used as target

variables in a random forest classification. Therefore the HS-maps were split in four maps each for

model training and calibration. The model results are later validated with the remaining two maps.

The resulting maps provided allocation probabilities for each cell to the respective cluster. Those

were combined with the temporal information from the snow surveys to estimate daily snow depth

for each cell (daily HS-maps). This was done using the normalized probabilities of all SnoMoS
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belonging to a cluster. Multiplying the probability to the SnoMoS time series results in HS-time

series for each cluster. Daily HS-maps are created by the summed product of probability and the

corresponding cluster HS-time series for each cell. The clusters found are visualized in Figure 1.

For deriving daily SWE-maps from the daily HS-maps the semi-empiric ∆Snow Model was used

(Winkler, Schellander, and Gruber 2021). The model is able to derive the SWE only relying on

a HS time series. Mean associated errors show high correlations when compared to the manually

taken snow data for HS-maps (R = 0.95) and for SWE-maps (R = 0.89) (Geissler, Rathmann, and

Weiler 2023).

For this work the modelled SWE-maps are used together with the clustering information. Therefore,

daily SWE-maps are cropped to each cluster and mean daily values are taken. Cropping and

summarising is done using the raster-package (R 4.2.0, Hijmans (2023)). The code is provided in

the digital appendix of this thesis.

Figure 1: Clustering information for the clusters open exposed (A), open shaded (B), open interme-
diate (C) and forested (D) by Geissler, Rathman, and Weiler 2023. (E) shows a satellite
image of the testsite

2.3 Climate Data

Hourly climate data from the test site’s meteorological station Erlenhoehe are available as well as

measurements for temperature, precipitation, relative humidity, incoming shortwave radiation and

wind speed. The climate input is attached to this document. The data is manually corrected by

Weiler (2023). From the two precepitation time series available, the “NS” time-series was selected.

The dataset was screened for duplicated entries, zero were found. Negative values for shortwave
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radiation (48%) were set to zero. Missing values for temperature (0.09%), shortwave radiation

(17.03%) and relative humidity (0.08%) were filled with monthly means. Datetime (year, month,

day and hour), temperature, precipitation and evapotranspiration are selected as model input. The

raw and cleaned data is attached to this thesis. Climate data wrangling was performed using the

tidyverse-package (R 4.2.0, raster-package Wickham et al. (2019)). The lubridate package (R

4.2.0, Grolemund and Wickham (2011)) is used for datetime calculations. A climate graph for the

whole winter seasons 2020/21 and 2021/22 can be found in Figure 11 (Appendix).

2.4 Potential Evapotranspiration

Data were aggregated to daily values (R 4.2.0, tidyverse-package) to calculate daily evapotran-

spiration (R 4.2.0, evapotranspiration-package (Guo, Westra, and Maier 2016)). The provided

ET.Penman-method was used with the following set of parameters:

• solar=“data”

• wind=“yes”

• windfunction_ver=1948

• alpha=0.08

• z0=0.001

The calculation is based on the original Penman equation (Penman and Keen 1948). Code to

produce the climate-input data can be found in the supplementary data of this work.

2.5 Model Development

2.5.1 Overall Structure

The module is designed as a callable function. Input and configuration parameters must be

provided by RoGeR. This includes the initial SWE before each time step, temperature, evapo-

transpiration, precipitation and the model configuration. A list of all inputs can be found in the

chapter Input Data. Model output must be stored in RoGeR or is lost otherwise.
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2.5.2 Python Environment

Programming was done in a python environment (Python 3.11). The code is edited with PyCharm

community edition Version 2023.1. Packages loaded are:

• numpy for efficient calculations in the numpy array data structure (Harris et al. 2020)

• pandas for input and output data wrangling in dataframes (McKinney and Others 2010)

• datetime for date and time formatting inside the module (Python Software Foundation 2021)

• solarpy for complex radiation input calculations (AeroPythonTeam 2019)

2.5.3 Input Data

Input data for the snow module function are month, day, hour, minute and second to calculate

a seasonal dependent radiation influence on the DDF. Only year, month and day are mandatory.

Temperature, snowfall temperature, a base DDF and precipitation are necessary to determine var-

ious accumulation and melt processes. The potential evapotranspiration is needed for an adjusted

sublimation calculation. A time step input allows variable time-stepping. Initial values for SWE

and liquid content (canopy- and ground-layer) before the next model time step should be provided.

A storage coefficient gives a fraction of liquid water which can be stored in the snow-layer. An

unloading factor determines the fraction of snow unloaded per day. Canopy coverage and a leaf

area index adjust the behaviour of ground and canopy layer. A shade value influences the extent

of the radiation impact on the DFF. This should be used to quantify shading through mountains

or nearby canopy. The refreezing rate determines the amount of refreezing dependent on the DDF.

Elevation, latitude, slope and aspect are necessary for incoming solar radiation calculations. The

station exposure variable is needed for precipitation correction. All input values are listed in Table

1.

2.5.4 Output Format

The model output is a named numpy array containing the values shown in Table 2. Primarily

relevant for RoGeR are the ground layer outflow and model state variable. They determine if

RoGeR evaporation calculations should be turned on or off. When off, the evaporation calculations
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Table 1: Overview of all input parameters of the snow module
Model Variable Description Default Unit

year Year (YYYY) - -
month Month (1-12) - -
day Day (1-31) - -
hour Hour (00 - 23) 0 -
minute Minute (00 - 59) 0 -

t Temperature - -
precip Precipitation for the time step - -
et Potential daily Evapotranspiration - -
timestep Time step 60 min
swe_canopy_0 Initial snow cover in the canopy as SWE 0 mm

swe_ground_0 Initial snow cover on the ground as SWE 0 mm
liquid_content_canopy_0 Initial liquid content in the canopy 0 mm
liquid_content_ground_0 Initial liquid content on the ground 0 mm
storage_coef Faction of the snowcover of maximum

liquid storage (0-1)
0.08 -

unloading_factor Unloading per day as a fraction of initial
load (0-1)

0.1 -

canopy_coverage Coverage of the canopy as fraction (0-1) 0 -
ddf Base-DDF 1.5 mm/C/day
t_snowfall Temperature dividing between snow and

rain
0.5 C

shade Factor regulating the radiation effect on
the DDF (1: No radiation, 0: Full
radiation)

0.5 -

lai Leaf area index for canopy, zero if no
canopy present

4 -

refreezing_rate Refreezing efficiency (dependent on
DDF)

1 -

elev Elevation 500 MSL
lat Latitude 45 degree
slope Mean Slope of the ground surface 0 degree
aspect Mean Aspect of the ground sourface 180 degree

station_exposure Station exposure derived from mean
windspeed

0 -

should be left to the sublimation routine of the model. Additional variables are supplied in the

output for later analysis.

2.5.5 Model State

The model state determines if the model is turned on or off. If the initial SWE for ground and

canopy layer are zero and the temperature is above snowfall threshold the snow module is turned

off. For the sake of a faster runtime no calculations are made in this case. Otherwise, the model

state is in “on” position. This is important for communication with RoGeR. For a model state

“on”, RoGeR should turn off evaporation and interception calculations. Additionally precipitation
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Table 2: Output data format of the snow module

Variable Datatype Description Unit

interception_storage float Storage available for intercepting snow mm
ddf_canopy float DDF for canopy melting mm/d/°C
ddf_ground float DDF for ground melting mm/d/°C
interception float The actual amount of interception mm
accumulation_canopy float Accumulating snow in canopy mm

rain_canopy float Precipitation reaching the canopy snow layer mm
accumulation_ground float Accumulating snow on ground mm
rain_ground float Precipitation reaching the ground snow layer mm
melt_pot_canopy float Potential melt in canopy layer mm
melt_pot_ground float Potential melt on ground mm

rain_melt_pot_canopy float Potential melt due to rain in canopy mm
rain_melt_pot_ground float Potential melt due to rain on ground mm
sublimation_pot_canopy float Potential sublimation in canopy mm
sublimation_pot_ground float Potential sublimation on ground mm
swe_canopy float Stored snow water equivalent in the canopy mm

sublimation_canopy float Actual sublimation in the canopy mm
melt_canopy float Melting in canopy mm
rain_melt_canopy float Rain melt in canopy mm
swe_ground float Stored snow water equivalent on ground mm
sublimation_ground float Actual sublimation on ground mm

melt_ground float Melting on ground mm
rain_melt_ground float Rain melt on ground mm
swe_canopy_unloaded float Amount of unloaded snow from the canopy mm
dripping float Amount of liquid water emitted by the canopy layer mm
liquid_content_canopy float Amount of liquid water stored in the canopy snow layer mm

outflow_ground float Water reaching the ground surface mm
liquid_content_ground float Amount of liquid water stored in the ground snow layer mm
refreezing_canopy float Amount of water refreezing in canopy mm
refreezing_ground float Amount of water refreezing on the ground mm
model_state int Returning the model state, 1-Model on, 0-Model off -

input should be directed into the snow module. Outflow from the ground-snow layer serves as input

for the RoGeR ground module.

2.5.6 Richter Precipitation Correction

Precipitation is separated in four categories following Richter (1995): liquid summer, liquid winter,

mixed and snowfall. Summer and winter precipitation are separated by month, setting May to

October as summer months. Mixed precipitation occurs between 0.5 ◦C ± snowfall temperature.

Above this range precipitation is counted as liquid (summer or winter), below as snowfall. A

corrected precipitation value is calculated as shown in Formula 2.1. The meteorological station

Erlenhöhe is rated as heavily sheltered (Table 4) due to a mean wind speed of 1.24 m s−1 for the

years 2021 and 2022.
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Pcorr = P + b × P ϵ (2.1)

Pcorr = Richter corrected precepitation [mm]

P = Measured precipitation [mm]

b = Richter value for station-exposure-type [-]

ϵ = Richter value for precipitaion-type [-]

Table 3: Categorization of meteorological stations by mean wind speed (Richter 1995) and the input
code for the model.

Windspeed Exposure Input

0-2 m/s heavily sheltered 4
2-5 m/s moderately shelterd 3
5-8 m/s slightly shelterd 2
>8 m/s exposed 1

Table 4: Parameters ϵ and b for Richter precepitation correction (Richter 1995)

b

type ϵ exposed slightly sheltered moderately sheltered heavily sheltered

liquid summer 0.38 0.34 0.31 0.28 0.24
liquid winter 0.46 0.34 0.28 0.24 0.19
mixed 0.55 0.54 0.39 0.30 0.18
snow 0.82 0.72 0.51 0.33 0.21
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2.5.7 Evaporation Enthalpy

The model is equipped with a routine for estimating the temperature dependent evaporation en-

thalpy for liquid water after B. Henderson-Sellers (1984) shown in Formula (2.2). By adding a melt

enthalpy of 2.26 MJ kg−1 a sublimation enthalpy is calculated. The assumption is made that 1 kg

of liquid water equals 1 L (or 1 mm water height normalized on 1 m2).

Hevap(T ) = 1.91846 × 106 ×
(

T

T − 33.91

)2
(2.2)

Hevap = Evaporation Enthalpy [J kg−1]

T = Temperature [K]

2.5.8 Maximum Interception Storage

To consider unloading an interception processes, an interception storage for snow is estimated.

Therefore, Formula (2.3), developed from Schmidt and Gluns (1991) and expanded by Hedstrom

and Pomeroy (1998) was used. A factor for canopy coverage is added. To compute the snow density

of fresh falling snow needed for the calculation, Formula (2.4) was obtained from the US-Army-

Corps-of-Engineers (1956).

Is = 6 × LAI × cc ×
(

0.27 + 46
ϕ

)
(2.3)

ϕ = 67.92 + 51.25 × exp
(

T

2.59

)
(2.4)

Is = Interception storage [mm]

LAI = Leaf Area Index [-]

cc = Canopy Coverage [-]

ϕ = Density of freshly fallen snow [g cm−3]

T = Temperature [°C]
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2.5.9 Degree-Day-Factor

For this model the DDF is split into two components, loosely following the path suggested by Hock

(1999). A fixed base value accounting for non-seasonal influences. A variable term accounts for

incoming shortwave radiation. This is done using the solarpy package (Python 3.11, AeroPython-

Team (2019)) to calculate potantial global radiation. The calculation is based on a solar model

from Duffie (1974). Latitude, slope, elevation and aspect are taken into account. This is done for

the start and the middle of each time step. Both values are averaged to ensure good representation

of the radiation for time steps up to one day. Finally radiation is reduced by a mean transmittance

(T = 0.75, (Hock 1999)). Then reflection on the snow surface is applied. The albedo for melting

snow was estimated to 0.4 according to Conway, Gades, and Raymond (1996) and Becherini et al.

(2021). Global radiation values, ranging from zero to 1.2×103 Wm2 are multiplied with a factor of

4×10−2 to get a proper representation of a seasonal DDF, as proposed by Hock (1999). The whole

equation is shown in Formula (2.5). DDF values are calculated differently for forested and barren

landscapes. Even if there is little to no canopy present directly at the site, shading can occur due to

nearby canopy. In this case the shading value reduces the radiation part of the ground layer DDF

(Formula (2.6)). For forested areas, the DDF below canopy is automatically reduced by shading

calculated out of canopy coverage. Canopy DDF is calculated as shown in Formula (2.6).

Gmean = Gstart + Gmiddle

2 (2.5)

DDFannual = G × rrf × k × (1 − a)

G = Potential global radiation [kW m−2]

DDFannual = Seasonal part of the DDF [mm ◦C−1d−1]

rrf = Radiation reducing factor set to 0.04 [-]

k = Mean Transmittance estimated to 0.75[-]

a = Albedo of melting snow estimated to 0.4 [-]
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DDFground = [DDFbase + DDFannual × (1 − cc) × (1 − shade)] × ts (2.6)

DDFcanopy = (DDFbase + DDFannual) × ts (2.7)

DDFground = DDF for groundlayer [mm ◦C−1 d−1]

DDFbase = Fixed part of the DDF [mm °C−1 d−1]

cc = Canopy Coverage [-]

shade = Shading 0: No shading, 1: Full shading [-]

ts = Time step [d]

DDFannual = Seasonal part of the DDF [mm◦C−1 d−1]

DDFcanopy = DDF forcanopy layer [mm ◦C−1 d−1]

2.5.10 Interception

Interception is estimated based on an algorithm described by Hedstrom and Pomeroy (1998). In-

tercepted snowfall is calculated as shown in Formula (2.8).

I = cc × p × Is − SWE0,c

Is
(2.8)

I = Interception [mm]

cc = Canopy Coverage [-]

p = Precepitation [mm]

Is = Interception storage [mm]

SWE0,c = Initial SWE stored in canopy [mm]
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2.5.11 Accumulation

The accumulation routine separates solid and liquid precipitation. Snow and rain (Formula (2.9)

and (2.10)) are distributed to ground- and canopy-layer. The amount of intercepted rain in the

canopy snow layer is assumed to be equal to the precipitation values multiplied with canopy cov-

erage. The rain part will be used for rain on snow melt calculations later on.

accground =


p − I for T ≤ tsnow and LAI ̸= 0

p for T ≤ tsnow and LAI = 0
(2.9)

acccanopy =


I for T ≤ tsnow and LAI ̸= 0

0 for T ≤ tsnow and LAI = 0

accground = Accumulation ground [mm]

acccanopy = Accumulation canopy [mm]

p = Precepitation [mm]

I = Interception [mm]

T = Temperature [°C]

tsnow = Snow fall temperature [°C]

LAI = Leaf area index [-]

pground =


p × (1 − cc) for T ≥ tsnow and LAI ̸= 0

p for T ≥ Tsnow and LAI = 0
(2.10)

pcanopy =


p × cc for T ≥ Tsnow and LAI ̸= 0

0 for T ≥ Tsnow and LAI = 0

pground = Rain reaching the ground-layer [mm]

pcanopy = Rain intercepted in the canopy [mm]

p = Precepitation [mm]

cc = Canopy Coverage [-]

T = Temperature [°C]

Tsnow = Snow fall temperature [°C]
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LAI = Leaf area index [-]

2.5.12 Potential Melt

Potential melt is calculated using the degree-day method. Melt occurs when temperatures are above

the melting point. Then, a defined amount of SWE melts per degree above melting temperature

per day (Formula (2.11)).

Mcanopy,pot =


DDFcanopy × T for T > Tmelt

0 for T ≤ Tmelt

(2.11)

Mground,pot =


DDFground × T for T > Tmelt

0 for T ≤ Tmelt

Mcanopy,pot = Potential melt in the canopy layer [mm]

Mground,pot = Potential melt on ground surface [mm]

DDFground = DDF for ground layer [mm ◦C−1 d−1]

DDFcanopy = DDF for canopy layer [mm ◦C−1 d−1]

T = Temperature [°C]

Tmelt = Melting-temperature [°C]
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2.5.13 Potential Rain Melt

The module is equipped with equations to calculate rain on snow melt. Liquid precipitation, divided

in the accumulation routine, leads to additional snow melting in the canopy and ground layers. The

amount of rain melting can be determined by calculating the amount of energy released by rain

warmer than melting temperature, using the heat capacity of liquid water. Then the amount of

rain melt is equal to the energy released, divided by the melt enthalpy of solid water (Formula

(2.12)).

Mcanopy,pot = pcanopy × T × C × H−1
melt (2.12)

Mground,pot =


pground × T × C × H−1

melt for SWEcanopy,0 > 0

(pground + pcanopy) × T × C × H−1
melt for SWEcanopy,0 = 0

Mcanopy,pot,rain = Potential rain melt in the canopy layer [mm]

Mground,pot,rain = Potential rain melt on ground surface [mm]

SWEcanopy,0 = SWE in canopy at the beginning of the time-step [mm]

pground = Rain reaching the ground-layer [mm]

pcanopy = Rain intercepted in the canopy [mm]

T = Temperature [°C]

C = Heat capacity of liquid water = 4190 J kg−1

Hmelt = Melt enthalpy of ice = 334 000 J kg−1

2.5.14 Potential Sublimation

A routine was developed to calculate a sublimation value. Therefore, the potential evaporation

input is used. Base sublimation is given as the product of the potential evapotranspiration value

and the ratio of evaporation- to sublimation-enthalpy (Formula (2.13) and (2.14)). Sublimation

below canopy is assumed to be inversly proportional to the LAI for three reasons: First the LAI

influences the amount of radiation reaching the ground layer and therefore reducing the amount of

energy available for sublimation on the ground snow layer. Second, the sublimating canopy snow

increases humidity lowering the sublimation on the ground. Third, windspeed is reduced on the

ground surface and therefore lessens sublimation on the ground layer even further. To put those

effects in a simple formula, inverse proportionality of LAI and ground sublimation suggests itself.
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The sublimation on the ground layer equals the unmodified sublimation value when no canopy

is present. In canopy sublimation losses of SWE are estimated as the product of LAI and base

sublimation. This is due to the increased surface area (which is proportional to the LAI) of the

snow cover in canopy. This is summarized in Formula (2.15).

Hsub = Hmelt × Hevap (2.13)

Hsub = Sublimation enthalpy [J kg−1]

Hmelt = Melt enthalpy [J kg−1] Hevap = Evaporation enthalpy [J kg−1]

S = ET × ts × Hevap

Hsub
(2.14)

S = Potential sublimation [mm]

ET = Potential evapotranpiration [mm d−1]

ts = Time step [d]

Hevap = Evaporation enthalpy [J kg−1]

Hsub = Sublimation enthalpy [J kg−1]

Sground =


S

LAI×cc for LAI > 0 and cc > 0

S for LAI = 0 for cc = 0
(2.15)

Scanopy =


S × LAI × cc for LAI > 0 and cc > 0

0 for LAI = 0 or cc = 0

Sground = Potential sublimation ground layer [mm]

Scanopy = Potential sublimation canopy layer [mm]

S = Potential sublimation [mm]

cc = Canopy Coverage [-]

LAI = Leaf Area Index [-]
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2.5.15 Calculating actual SWE

The heart of the model is the calc_swe routine. It determines actual SWE values from potential

melt, rain melt and sublimation. The algorithm for canopy- and ground layer follows the same

scheme:

1. Add accumulation, to the initial SWE value: Formula (2.16)

2. Subtract sublimation: Formula (2.17)

3. Subtract melt: Formula(2.17)

4. Subtract rain melt: Formula (2.17)

SWE1 = SWE0 + acc (2.16)

SWE1 SWE after the time step [mm]

SWE0 SWE before the time step [mm]

acc = Accumulation ground or canopy [mm]

SWE1 =


0 for SWE0 < xpot

SWE0 − xpot for SWE0 ≥ xpot

(2.17)

xreal =


xpot − SWE0 for SWE0 < xpot

xpot for SWE0 ≥ xpot

SWE1 = SWE after the time step [mm]

SWE0 = SWE before the time step [mm]

xpot = Potential value for sublimation, melt or rain melt [mm]

xreal = Actual sublimation, melt or rain melt [mm]
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2.5.16 Unloading

After sublimation and melt processes are dealt with, unloading can be calculated. Unloading is

controlled by an unloading factor. It gives the fraction of snow unloaded from initial SWE from

the canopy to the ground layer. This equation (Formula (2.18)) is similar to the exponential decay

widely used in different snow modules (J. Pomeroy et al. 1998) (Yang, Endreny, and Nowak 2011)

(Mahat and Tarboton 2014).

ul = SWE1 × uf × ts (2.18)

ul = Unloaded snow [mm]

SWE1 = SWE after the time step [mm]

uf = Unloading factor [-]

ts = Time step [d]

2.5.17 Liquid Water

The liquid water routine consists of two parts. First the liquid water content of the canopy layer

is calculated. Therefore, intercepted rain, melt and rain melt are added to the initial liquid water

content. This happens when (1) there is snow on canopy and (2) when temperature is above

freezing temperature. When the temperature drops below freezing temperature, the liquid storage

is frozen and adds to the canopy SWE at a rate dependent on the base DDF and the refreezing

rate. If liquid storage exceeds the storage capacity the excess water goes to dripping and canopy

liquid content is set to maximal storage capacity. The flowchart (Figure 2) visualizes the process.

Calculation details are shown in the Formulas (2.19) - (2.23). The second part is the ground layer

liquid water calculation (Figure 3). It follows the structure of the canopy layer calculation. What’s

different is that dripping from canopy adds to the ground snow layer, and exiting water is diverted

to outflow (compare Formula (2.24) - (2.28)).
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Figure 2: Workflow of the canopy liquid water routine.
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Dripping (2.19)

D = SWE0,canopy,liquid + Mcanopy,rain + Mcanopy + I

SWE2,canopy = SWE1,canopy

SWE2,canopy,liquid = 0

Refreezing (2.20)

D = 0

SWE2,canopy =


SWE1,canopy + cref × DDFbase × ts for SWE2,canopy,liquid > cref × DDF × ts

SWE1,canopy + SWE1,canopy,liquid for SWE2,canopy,liquid ≤ cref × DDF × ts

SWE2,canopy,liquid =


SWE1,canopy,liquid − cref × DDFbase × ts for SWE2,canopy,liquid > cref × DDF × ts

0 for SWE2,canopy,liquid ≤ cref × DDF × ts

Melt (2.21)

SWE1,canopy,liquid = Mcanopy,rain + Mcanopy + I

Overflow liquid storage (2.22)

D = SWE1,canopy,liquid − SWE1,canopy × cstor

SWE2,canopy = SWE1,canopy

SWE2,canopy,liquid = SWE1,canopy × cstor

Liquid remains in snow layer (2.23)

D = 0

SWE2,canopy = SWE1,canopy

SWE2,canopy,liquid = SWE2,canopy,liquid
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D = Dripping [mm]

SWE0,canopy,liquid = Initial liquid water content in canopy [mm]

SWE1,canopy = SWE in canopy before liquid-content calculations [mm]

SWE2,canopy = SWE in canopy after liquid-content calculations [mm]

SWE1,canopy,liquid = Liquid water in canopy after adding melt, rain melt and inter-

cepted rain [mm]

SWE2,canopy,liquid = Liquid water in canopy after liquid water calculations [mm]

Mcanopy = Real melt in canopy [mm]

Mcanopy,rain = Rain melt in canopy [mm]

I = Intercepted rain in canopy [mm]

DDFbase = Fixed part of the DDF [mm °C−1 d−1]

ts = Time step [d]

cstor = Storage coefficient in fraction of SWE [-]

cref = Refreezing coefficient [mm/d]
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Figure 3: Flowchart of the ground-layer’s liquid water routine.
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Direct outflow (2.24)

O = SWE0,ground,liquid + Mground, rain + Mground + Pground + D

SWE2,ground = SWE1,ground

SWE2,ground,liquid = 0

Refreezing (2.25)

O = 0

SWE2,ground =


SWE1,ground + cref × DDFbase × ts for SWE2,ground,liquid > cref × DDF × ts

SWE1,ground + SWE1,ground,liquid for SWE2,ground,liquid ≤ cref × DDF × ts

SWE2,ground,liquid =


SWE1,ground,liquid − cref × DDFbase × ts for SWE2,ground,liquid > cref × DDF × ts

0 for SWE2,ground,liquid ≤ cref × DDF × ts

Melt (2.26)

SWE1,ground,liquid = Mground,rain + Mground + Pground + D

Overflow liquid storage (2.27)

O = SWE1,ground,liquid − SWE1,ground × cstor

SWE2,ground = SWE1,ground

SWE2,ground,liquid = SWE1,ground × cstor

Liquid remains in snow layer (2.28)

O = 0

SWE2,ground = SWE1,ground

SWE2,ground,liquid = SWE2,ground,liquid
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O = Outflow to the soil surface [mm]

SWE0,ground,liquid = Initial liquid water in ground snow layer [mm]

SWE1,ground = SWE in ground snow layer before liquid-content calculations [mm]

SWE2,ground = SWE in ground snow layer after liquid-content calculations [mm]

SWE1,ground,liquid = Water in ground layer after melt, rain melt and interception [mm]

SWE2,ground,liquid = Water in ground layer after liquid water calculations [mm]

Mground = Real melt in ground snow layer [mm]

Mground,rain = Rain melt in ground snow layer [mm]

Pground = Rain on ground [mm]

D = Dripping from Canopy [mm]

DDFbase = Fixed part of the DDF [mm °C−1 d−1] (Hock 1999)

ts = Time step [d]

cstor = Storage coefficient in fraction of SWE [-]

cref = Refreezing coefficient [mm/d]

2.6 Goodness of Fit Measures

To quantify the model error different “goodness of fit” measures are available. The decision was

made to integrate Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE). Both are

used to quantify the accuracy of results in the work of Geissler, Rathmann, and Weiler (2023).

To provide a comprehensive assessment of model performance, capturing both the magnitude and

timing of events the Kling Gupta Efficiency (KGE, Formula (2.29), Gupta et al. (2009)) measure

was calculated to compare ∆Snow and model data. KGE captures correlation, bias, and variability

and is therefore better suited to describe the model efficiency than MEA or RMSE alone.

KGE = 1 −

√
(r − 1)2 +

(
σsim

σobs
− 1

)2
+

(
µsim

µobs
− 1

)2
(2.29)

r = Linear correlation between observations and simulations

σobs = Standard deviation in observations

σsim = Standard deviation in simulations

µobs = Observation mean

µsim = Simulation mean
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2.7 Parameter Configuration and Model Comparison

Parameters for modelling clusters A-D were set manually. This was done following these guide-

lines:

• Refreezing rate was set to 1, storage coefficient to 0.08 (roughly following maximum liquid

water content of 10% after Techel and Pielmeier (2011), mimicking the Nordic HBV settings

(Saelthun 1996)).

• The unloading factor was set to 0.1 for all clusters.

• Latitude, elevation, slope and aspect were taken as mean values from Geissler, Rathmann,

and Weiler (2023).

• LAI and canopy coverage were obtained from Geissler, Rathmann, and Weiler (2023) for all

4 clusters.

• Shade was set to zero for forested and open-exposed areas. The open-shaded cluster was

modelled with a shading value of 0.9 due to shading of the surrounding forest. Shade for the

Open intermediate cluster was set to 0.5. The cluster was described as areas neighbouring

forest in eastern or western directions. Accordingly direct sunlight reaches those areas in 50%

of the whole sunshine duration.

• DDF was set higher in forested clusters (cluster D), or clusters surrounded by forest (cluster

A). This was done, to take amplified long-wave radiation in forested areas into account. DDF

is usually lower for clusters with less trees (cluster B, C).

• Snowfall temperature was adjusted to be lower in forested clusters. This was done to model

long-wave radiation and reduced heat-flux effects.

To ascertain an input data resolution that yields reasonable model outcomes, the model was evalu-

ated using both daily and hourly temperature inputs. All four clusters were simulated, each cluster

with an individual parameter set. Time step was equally set for all simulations to 60 minutes to

ensure fast calculation and sufficient precision of the model output at the same time. Model output

was compared to the ∆Snow time series from Geissler, Rathmann, and Weiler (2023). Therefore,

an error margin was added to the Geissler-SWE-data. It was calculated multiplying the percent

mean RMSE to the Geissler model output. Manual SWE measurements also provided by Geissler,

Rathmann, and Weiler (2023) were used for validating model results. For each sample day the

standard deviation was calculated for all measurement assigned to one cluster.
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After a visual inspection of the model’s ground layer SWE output snowfall temperature was farther

adjusted to reach a good fit of accumulation intervals and magnitudes. The same was applied to

the DDF for melt processes. The model was adjusted to fit the winter season 2021-2022 (2021-11-15

until 2022-05-01). Then the same input values were used to model the 2020-2021 (2020-11-15 until

2021-05-14) winter season without further calibration.

2.8 Model Output Post-Processing

For creating graphs and tables, data were read, aggregated and evaluated with the tidyverse-package

(R 4.2.0, tidyverse-package). Plots were made with ggplot, also taken from the tidyverse-package.

Plot-arrangement was done with patchwork (R 4.2.0, Pedersen (2020)). Tables were created with

kableExtra (R 4.2.0, Zhu (2021)).

2.9 Creating Accumulation and Ablation Curves

Accumulation and ablation curves were created with code available in the markdown file attached

to this thesis. The algorithm detects increases or decreases in ground SWE (liquid water content

included) for each time step. Values were plotted cumulatively.

2.10 Canopy Layer Evaluation

To assess the precision of the canopy layer routine of the snow model, the following solution was

found. The test-area has been photographed every 6 hours by various SnoMoS. The data was

obtained from Geissler, Rathmann, and Weiler (2023). Two SnoMoS were identified (Figure 4),

one facing a south-, the other a north-canopy-edge. Time series were created containing boolean

values for snow-cover in canopy by visual inspection of the images. Those were then compared to

the model forested cluster (hourly temperature input) canopy SWE output. Images were screened

manually for snow in canopy following these guidelines:

• Snowfall even during night time is easily visible in the pictures, because the flashlight of

the camera is reflected by snow flakes. The flash does not reach the canopy edges properly.

Therefore determination of snow in canopy during night is difficult in foggy conditions. It is

assumed that snow in canopy is present when snow is falling.
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• Especially during night time branches seem white due to the flash, rime ice or hoarfrost. This

is not counted as snow in canopy layer.

• If snow or no snow in canopy cannot be clearly distinguished, no snow is assumed.

The amount of hours when snow in the canopy was present in both the images and the model

results were counted. The results were divided by the total amount of snow-hours in the pictures.

This was done for the north and south facing canopy edges for a time period in between 2021-11-01

00:00:00 and 2022-05-01 00:00:00.

Figure 4: Position of the SnoMoS used for evalutating the canopy snow layer. Angle of sight is
indicated by the red triangle.
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3 Results

3.1 Model Parameters, Resolution and Performance

To match the ∆Snow SWE-time-series 2021-2022 parameters were adjusted accordingly. Table 5

shows the adjusted parameters used for the individual model runs. Snowfall temperature is lowest

in the forested cluster (0.1 ◦C). The other clusters show higher thresholds between 0.4 and 0.7 ◦C.

The base-DDF is distributed between 1.2 and 1.4 mm◦C−1d−1.

Table 5: Input data for modelling clusters A-D with daily and hourly temperature data.

Model Variable Open-shaded Open-exposed Open-intermediate Forested Unit

storage_coef 0.08 0.08 0.08 0.08 -
unloading_factor 0.10 0.10 0.10 0.10 -
canopy_coverage 0.20 0.40 0.30 0.80 -
ddf 1.20 1.20 1.30 1.40 mm/°C/day
t_snowfall 0.70 0.40 0.50 0.10 °C

shade 0.90 0.00 0.50 0.00 -
lai 4.00 4.00 4.00 4.50 -
refreezing_rate 1.00 1.00 1.00 1.00 -
elev 1200.00 1200.00 1200.00 1200.00 MSL
lat 47.00 47.00 47.00 47.00 degree

slope 15.00 15.00 15.00 15.00 degree
aspect 250.00 250.00 250.00 250.00 degree
station_exposure 4.00 4.00 4.00 4.00 -

3.1.1 Calibration Season 2021 - 2022

For the 2021/22 winter season all SWE time-series closely follow the ∆Snow-SWE by Geissler,

Rathmann, and Weiler (2023) (Figure 5). This indicates that the model is generally capturing

the overall trend of snow accumulation and ablation. However, the model appears to encounter

challenges in balancing snow accumulation and ablation processes. Distinct variations in both accu-

mulation and ablation between midwinter and spring are noticeable. The model shows discrepancies

in capturing the correct intensity of these processes.

Noticeable differences between model and reference data are visible in the mid winter melt event

in late December to early January. In cluster B and D (open exposed and forested) its magnitude

is underestimated. Melt rates are to low to match the ∆Snow time series. The resulting error in

SWE is about 50 mm. For the open exposed site deficits in accumulation, predicted by the model,

are closing this gap in the later season. The same is true for the forested cluster hourly temperature
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input time series. Modelling with daily temperature leads to a bigger gap between model output

and the ∆Snow data in the forested cluster.

Clusters A-C exhibit disparities between the simulated ∆Snow values and the model output. In

both cases, the April melt rates are underestimated. However, the model adequately captures the

melt rates in March. The model fails to capture the abrupt shifts in melt rates, resulting in a

delayed prediction of the end of snow cover. This lag amounts to less than one week.

The ∆Snow time series exhibits two phases of static SWE conditions. The first is located in

December, the second in late March until mid April. The model shows a reduction of SWE in

those phases for all clusters.

Utilizing hourly temperature input appears to yield a slight enhancement in model output. Ob-

servable disparities in the individual cluster’s time series are evident. In the open shaded cluster,

a substantial accumulation event in early February results in differences of up to 50 mm in SWE

model output due to the utilization of hourly temperature data. Conversely, the forested cluster

exhibits a contrasting behaviour. In this case, accumulation events are overestimated by the model

that calculates with daily temperature input. This discrepancy is notable in the accumulation

events at the outset of February. In the open exposed and open intermediate clusters, both hourly

and daily temperature input data lead to negligible differences in model output.
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Figure 5: Plots for model runs 2021/22 with mean daily temperature (orange) and hourly tempera-
ture (violet) for clusters A-D. Shown is ground layer SWE (liquid water in the snow-cover
adds to SWE). The red line marks the SWE modelled by Geissler 2023 with RSME (28%)
multiplied to each value to create the red error band. Count, mean and standard deviation
are plotted for manual SWE measurements in black. Model parameters were adjusted to
fit the ∆Snow SWE data.
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3.1.2 Validation Season 2020 - 2021

To gain insights into the consistency of model outcomes, a second season was simulated for evalu-

ation purposes. The simulated time-series closely align with both the ∆Snow model output from

Geissler, Rathmann, and Weiler (2023) and the manually collected SWE measurements, with a few

exceptions (Figure 6).

Two melt events were incorrectly predicted by the model. One in the beginning of December and a

second in late January until early February. In both events model predictions are above the amount

of melt indicated by the ∆Snow time series. This is ture for all clusters. The largest deviations

between model results and observed data are observed in the open shaded cluster. In this cluster,

the melt event at the end of February leads to an SWE deficit of up to 100 mm in both hourly and

daily temperature simulations.

In contrast to the last observation a melt event is present in the Geissler, Rathmann, and Weiler

(2023) ∆Snow data in early April which is not accounted for in the model results for all but the

forested cluster.

Furthermore snow falling during late January is not simulated well by the model. Snowfall is

overestimated by the model when referring to the ∆Snow time series. However the model results

lie well within reach of the manual snow measurements error margins.

Discrepancies between hourly and daily temperature input are noticeable in all clusters except the

open intermediate one. In the remaining three clusters the model’s SWE differs from the ∆Snow

data during the accumulation period in late January. The resulting error is carried through the

rest of the season. In the open shaded cluster hourly temperature modelling leads to higher SWE.

The opposite is true for the open exposed and the forested cluster.
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Figure 6: Plots for model runs winter 2020/21 with mean daily temperature (orange) and hourly
temperature (violet) for clusters A-D. Shown is ground layer SWE (liquid water in the
snow-cover addes to SWE). The red line marks the SWE modelled by Geissler 2023
with NRSME (30%) multiplied to each value to create the red error band. Count, mean
and standard deviation are plotted for manual SWE measurements in black. No futher
adjustment to the model parameters was made to provide validation for the 2021/22
model configuration.
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3.2 Quantitative Model Evaluation

To quantify the model error different “goodness of fit” measures are available. The decision was

made to integrate MAE and RMSE. Both are used to quantify the accuracy of results in the

work of Geissler, Rathmann, and Weiler (2023). To provide a comprehensive assessment of model

performance, capturing both the magnitude and timing of events the KGE measure was calculated

to compare

DeltaSnow and model data. KGE captures correlation, bias, and variability of time-series and is

therefore better suited to describe the model efficiency than MEA or RMSE alone. A list of the

three named measures comparing all model runs to the

DeltaSnow time series is shown in Table 6.

Model performance is better for the calibration season 2021/22 than for validation in 2020/21. The

overall pattern is that hourly temperature input leads to similar or better model results compared

to the daily temperature input. The exception is the 2020/21 open-exposed simulation. For this

cluster a model based on daily temperature performs slightly better. The highest difference between

daily and hourly temperature input can be seen in the forested cluster. Hourly temperature input

almost doubles the KGE. RMSE and MAE are halved.

Table 6: Comparison of the Geissler 2023 ∆Snow data and the models ground-layer SWE (liquid
content included) with KGE, RMSE and MAE.

Daily Temperature Hourly Temperature

Cluster KGE RMSE MAE KGE RMSE MAE

Season 2020/21
Open shaded 0.64 75.43 55.46 0.80 49.62 38.02
Open exposed 0.82 24.03 20.07 0.62 39.06 31.57
Open intermediate 0.87 38.79 31.43 0.90 33.98 28.26
Forested 0.46 27.20 18.65 0.87 10.78 8.35

Season 2021/22
Open shaded 0.83 30.24 22.65 0.91 24.91 19.77
Open exposed 0.92 18.26 14.30 0.91 16.53 13.33
Open intermediate 0.94 17.63 12.22 0.90 21.70 15.78
Forested 0.52 24.86 19.95 0.84 11.94 8.24
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3.3 Accumulation

The model outcomes exhibit a notable sensitivity to the selected threshold temperature (refer to

Figure 13 in Appendix). This threshold temperature stands as the sole parameter that affects

variations in SWE. To assess this relatively straightforward algorithm, all accumulation events

are cumulatively aggregated, with liquid content contributing to SWE. The results are illustrated

in Figure 7 for all the model runs previously described. Across all plots, the model consistently

overestimates accumulation quantities when compared against the data from Geissler, Rathmann,

and Weiler (2023).

This pattern remains relatively consistent across all clusters and temperature input simulations.

Five primary accumulation events can be identified:

The initial accumulation happens in late November, marking the onset of the snowfall period. This

event concludes during the second week of December, leading to discernible differences in SWE

across all clusters except the open exposed one. The second event occurs at the beginning of

January, resulting in an increase of the modelled SWE levels. Once again, the open exposed cluster

stands as the exception. Toward the end of January, the ∆Snow model indicates a steady increase

in SWE, a trend not mirrored by the model data. Around the beginning of February, a third high

magnitude accumulation event emerges in the model’s SWE time-series. Absent in the Geissler,

Rathmann, and Weiler (2023) model data, this event bridges the SWE disparity. Distributed over

the entirety of February, the fourth accumulation phase begins. Persistent model overestimation

leads to deficits ranging from 50 to 200 mm in SWE compared to the ∆Snow model time series.

The beginning of April sees an accumulation event that appears to be well-matched by the model

data.
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Figure 7: Plots for 2021-2022 accumulation processes with mean daily temperature (orange) and
hourly temperature (violet) SWE simulations 2021-2022 for cluster A-D. The red line
marks the cumulative gains in SWE modelled by Geissler 2023.
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3.4 Ablation

In contrast to the accumulation processes, various model routines influence ablation processes.

Temperature- and rain-induced melting ultimately result in outflows, reducing the SWE, while

sublimation directly removes water from the SWE and releases it into the air. The combined effect

of these processes, accumulated over the 2021/22 season, is depicted in Figure 8. Notably, all model

runs tend to overestimate ablation.

The initial decrease in snow-cover SWE becomes apparent by the end of December in the ∆Snow

graph from Geissler, Rathmann, and Weiler (2023). However, all model curves show ablation

occurring before this date. The discrepancy between the model and reference data varies from

nearly zero (exposed (B) and forested (D) clusters) to approximately 50 mm SWE (shaded (A) and

intermediate (C) clusters).

Between late December and mid-March, the ∆Snow data for clusters 1-3 (A-C) do not indicate

any significant ablation. However, in the forested cluster, the data suggests a minor melting event

in mid-February. This leads to an expanding difference between the reference and model data,

ranging from approximately 100 mm (for the exposed and forested clusters) to around 200 mm (for

the shaded and intermediate clusters) of SWE. Ablation rates appear to align more closely in late

March and early April.

Notably, the conclusion of the snow season is predicted with reasonable accuracy across the clusters,

generally falling within a margin of about one week. It’s worth highlighting that, in the forested

cluster, the model anticipates the end of the snow season to be about two weeks earlier than the

observed data.

44



−600

−400

−200

0
A

bl
. [

m
m

]

O
pen

 S
haded

A

−600

−400

−200

0

A
bl

. [
m

m
]

O
pen

 E
xposed

B

−600

−400

−200

0

A
bl

. [
m

m
]

O
pen

 Interm
ediate

C

−600

−400

−200

0

Nov 21 Dec 21 Jan 22 Feb 22 Mar 22 Apr 22 May 22

A
bl

. [
m

m
]

 
F

orested

D

Model hourly 
temperature

Model daily 
temperature Geissler 2023

Figure 8: Plots for ablation processes with mean daily temperature (orange) and hourly tempera-
ture (violet) SWE simulations 2021-2022 for clusters A-D. Red lines indicated the cumu-
lated losses in SWE from the ∆Snow time series obtained from the Geissler 2023.
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3.5 Sublimation

Evaluating sublimation on a daily basis can prove challenging. This is primarily caused by a lack

of reference data. Data for comparison are available for whole seasons. Therefore, the model data

was compared to seasonal evaporation values from literature. Table 7 gives an overview on seasonal

sublimation values of described model runs. Sublimation is split between ground and canopy layer

for hourly- and daily-input model results. Sublimation values between 138 and 187 mm are reached.

The maximum difference between hourly and daily temperature input simulations for sublimation is

below 7.4% for cluster 4 (forested). The fractions of solid precipitation returned to the atmosphere

ranges from 25 to 33%. Peak values are simulated for the open shaded cluster.

Table 7: Winter seasons 2021/22 sublimation values for hourly and daily temperature modelling.

Daily Temperature Hourly Temperature

Cluster Sub.
canopy

Sub.
ground

Sub.
SUM

Total
solid
Prec.

Sub.
Frac.

Sub.
canopy

Sub.
ground

Sub.
SUM

Total
solid
Prec.

Sub.
Frac.

[mm] [mm] [mm] [mm] [%] [mm] [mm] [mm] [mm] [%]

A 25.7 161.1 186.7 567.6 32.90 23.8 163.1 186.9 595.4 31.39
B 111.6 36.4 147.9 462.5 31.99 105.3 36.4 141.7 476.7 29.72
C 38.9 104.4 143.3 541.1 26.48 36.6 105.2 141.8 569.3 24.91
D 118.6 29.5 148.2 455.0 32.56 110.1 27.9 138.0 441.0 31.30

3.6 Refreezing

Similar to sublimation, an evaluation of refreezing on the seasonal scale seems to be the right course

of action. Refreezing values for all model runs are extracted and summarised for all model runs.

Results are shown in Table 8. Refreezing ranges from 19 to 25% of the total melt. Values for

hourly temperature input are generally higher than for daily temperature input. Little refreezing

is taking place in the canopy layer. The majority of refrozen SWE is found in the ground layers

for all clusters.

3.7 Internal Model Error

Some models do make errors in their calculations. In a hydrological model internal errors can be

made visible by balancing all in- and outputs. This is done for all model runs. Therefore, the sum
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Table 8: Refreezing (Ref.) values of 2021-2022 for hourly and daily temperature modelling for all
four clusters.

Daily Temperature Hourly Temperature

Cluster Ref.
canopy

Ref.
ground

Ref.
SUM

Total
melt

Frac.
of Ref.

Ref.
canopy

Ref.
ground

Ref.
SUM

Total
melt

Frac.
of Ref.

[mm] [mm] [mm] [mm] [%] [mm] [mm] [mm] [mm] [%]

A 0.1 102.1 102.2 483.0 21.15 1.0 132.4 133.4 532.4 25.07
B 0.9 77.6 78.5 393.1 19.98 3.4 102.8 106.2 441.2 24.07
C 0.1 102.5 102.6 500.5 20.50 1.5 134.3 135.8 563.3 24.11
D 0.9 71.2 72.1 379.0 19.03 3.1 85.5 88.6 391.6 22.63

of rain and snow is compared to the sublimation and outflow values of the model. No internal

model error is detectable.

Table 9: Absolute model error. OUT is the sum of outflow and sublimation (canopy and ground-
layer). IN is the amount of preciptation when model state is set to ON for the winter
season 2021/22.

Cluster Subl.
canopy

Subl.
ground Outflow IN OUT Error

[mm] [mm] [mm] [mm] [mm] [mm]

Daily Temp.
Open shaded 25.7 161.1 765.6 952.4 952.4 0
Open exposed 111.6 36.4 613.1 761.0 761.0 0
Open intermediate 38.9 104.4 756.1 899.4 899.4 0
Forested 118.6 29.5 593.2 741.4 741.4 0

Hourly Temp.
Open shaded 23.8 164.2 780.2 968.2 968.2 0
Open exposed 105.3 36.4 624.5 766.2 766.2 0
Open intermediate 36.6 105.2 764.0 905.9 905.9 0
Forested 110.1 27.9 603.3 741.3 741.3 0

3.8 Canopy Snow Layer Evaluation

A comparison between observed an simulated snow in canopy layer is shown in Figure 9. The

fraction of snow-hours correctly predicted by the model is noted in Table 10. Overall the model

captures the pattern of snow days derived from the images. The model tends to simulate the

quantity of snow hours better for south facing canopy snow data (compare the fraction of correctly

predicted snow-hours in Table 10). Snow in the north facing canopy tends to lower melt rates

than the model suggests. This effect is also observed for the south-facing canopy data, but smaller.

Hourly temperature simulations show a slightly lower fraction of correctly predicted canopy snow

hours.
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Table 10: The fraction of predicted snow hours that align with SnoMoS observations compared to
the total predicted snow hours.

Cluster North South

Daily Temp.
Open shaded 0.86 0.95
Open exposed 0.84 0.94
Open intermediate 0.85 0.95
Forested 0.82 0.93

Hourly Temp.
Open shaded 0.85 0.95
Open exposed 0.85 0.96
Open intermediate 0.85 0.95
Forested 0.85 0.95

3.9 Rain on Snow

Figure 10 shows the model performance during rain on snow conditions. It represents a zoom in of

the previously mentioned model run (hourly temperature, model for forested cluster). Shown are
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a temperature and precipitation digram, a SWE-Plot with simulation results from this work and

the results from Geissler, Rathmann, and Weiler (2023) as comparison. Outflow and snow-layer

saturation were plotted to supplement additional internal model data for evaluation. In their work

Geissler et al. described one ROS event in late December. It was recorded after three days of mild

rain. Starting on 2021-12-27 the precipitation increased and melt rates amplified accordingly. Rain

was falling until the 29th of December. From then on temperatures increased again and the warm

period continued until 2022-01-04 (A). Overall the model is able to simulate the ROS events in

a general manner. Melt rates during the main rain melt phase from 27th to 30th are predicted

too low. Melt rates during the following warm phase seem to be quite accurate. After noon on

the 24th liquid content in the snow-cover is not rising any more (B). This also can be seen in the

outflow graph (C). Outflow starts at noon the 24th following the precipitation pattern. Maximum

values are reached on the 29th. In the following period with no precipitation outflow resembles the

temperature graph.

Numerical data for the event were supplied (Table 11) to gain insight into the leading processes

driving the melting of the snow-pack. Precipitation was about 84 mm for the whole period. Some

is reaching the ground directly, the other part through dripping from canopy. The amounts of

dripping are mostly equal between hourly and daily temperature models. A small fraction of solid

snow is unloaded from canopy, presumed from the snow event on the 29th. Rain-melt is in between

4.2 and 4.7 mm and similar for all clusters and inputs. Rain melt rates play a relatively small role

in ROS melt when compared to temperature melt. Temperature melt is approximately 5 to 7 times

higher than rain-melt. Highest temperature melt is modelled for the forested cluster.
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Table 11: Cumulative values for richter-corrected precepitation (P), throughfalling precipiation (P
ground), dripping from canopy layer (D), melt values (M) for rain and temperature melt
the ground outflow (O). The event time was set in between 2021-12-24 12:00 AM and
2021-12-30 06:00 PM.

Cluster P
total

P
liquid

ground

D M
rain

M
temp.

O

[mm] [mm] [mm] [mm] [mm] [mm]

Daily Temp.
Open shaded 83.7 66.9 16.7 4.2 22.8 110.0
Open exposed 83.7 50.2 33.5 4.2 25.2 112.1
Open intermediate 83.7 58.6 25.1 4.2 24.9 111.8
Forested 83.7 16.7 66.9 4.2 28.6 114.7

Hourly Temp.
Open shaded 83.6 66.9 16.7 4.7 23.2 110.1
Open exposed 83.7 50.2 33.5 4.7 25.9 113.0
Open intermediate 83.6 58.5 25.1 4.7 25.5 112.5
Forested 83.7 16.7 66.9 4.7 29.2 116.3

4 Discussion

4.1 Model Structure

In the context of this master thesis, it’s important to acknowledge that while the snow model’s

structure has been meticulously designed, based on current knowledge of snow physics and meteo-

rology, its actual performance within the Roger program remains uncertain. As the author of this

thesis, I am not directly involved in the implementation process, making it challenging for me to

definitively assess how well the model’s structure will integrate with RoGeR’s existing framework

and contribute to its predictive capabilities. The effectiveness of the model within the RoGeR

program can only be determined through the practical implementation and subsequent evaluation

by experts responsible for its integration. This thesis lays the theoretical groundwork, but the

model’s real-world performance and compatibility will ultimately unfold during its implementation

phase.

4.2 Internal Model Error

As a first step in model evaluation, the internal model error was examined. As shown the model

does not exhibit any internal errors. This is proof for the basic functionality of the program. For

future research, it is essential to acknowledge that, owing to the Richter precipitation correction,

a greater amount of precipitation exits the model than initially provided. Following the Richter
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correction, all incoming water is accounted for through a combination of sublimation and outflow

processes. For a quantification of the increase in precipitation for both modelled seasons see Table

12 in the appendix.

4.3 Model Parameters

The evaluation of model parameters plays a crucial role in assessing a physics based model. The

values assigned to these parameters provide valuable insights into the model’s representation of un-

derlying processes. Estimating the credibility of model parameters that describe snow mechanisms

offers a possibility to understand how effectively the model predicts these processes’ dynamics.

4.3.1 Liquid Storage Coefficient

Of these parameters, the storage coefficient holds particular significance as it dictates the snow

cover’s capacity to retain water. This, in turn, plays a role in initiating melt processes. Prior to

reaching saturation, the snow cover stores water. That has the potential to freeze during night-time.

The determination of the storage coefficient is informed by existing literature (Koch et al. 2014;

Mitterer et al. 2011; Saelthun 1996). All liquid water contained within the snow cover contributes

to the SWE.

The model aptly captured the onset of melt events during the 2021/22 calibration season. Slight

ablation in between the melt events could be tracked down to sublimation losses. Notably, there

exists no discernible bias in melt timing (compare Figure 8), implying the overall appropriateness

of the chosen storage coefficient. However, in the previous season (2020/21), the model predicted

a mid-winter melt event for all clusters in late January. The melt event is not present in the

reference ∆Snow data. This could be caused by inaccuracies of the ∆Snow model. Potentially,

modelling with a higher storage capacity could have led to a higher fraction of water stored in

the snow cover for later refreezing. This could have lessened the effects of the melt and therefore

enhanced model precision. On the other hand spring melt in April was predicted late. Potentially

the state of the snow pack did not allow for any more liquid water to be stored. This could be

due to previous refreezing processes, densifiying the snow cover and lowering the water holding

capacity. In this context, the pursuit of more intricate solutions, such as coupling water holding

capacity with a snow state simulation - largely dictated by snow temperature and density - might
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be imperative. The challenges associated with acquiring liquid content measurements at a high

spatial resolution are highlighted by previous work (Techel and Pielmeier 2011). In the absence

of well-verified data suitable for rigorously testing complex methodologies, the utilization of the

storage coefficient approach remains pragmatic and judicious.

4.3.2 Refreezing Rate

Liquid water within the snow cover has the potential to undergo refreezing. The Nordic HBV

model treats refreezing like melt processes, employing a DDF. However, in this configuration, the

DDF was intertwined with a refreezing efficiency factor set at 5%. This implies that the refreezing

process operates at a rate 20 times slower than melting. The rationale behind this specific efficiency

factor remains elusive, as no relevant literature elucidates its basis. Consequently, for the scope

of this study, a pragmatic assumption is made: Refreezing is assumed to occur at the same rate

as melting. Therefore, the refreezing rate is calibrated to 1. In the absence of validation data

for refreezing in sub-alpine catchments, the annual amount of refreezing which is roughly 50% of

annual glacial refreezing seems plausible. It is worth noting that, should future investigations yield

evidence to the contrary, adjusting the refreezing mechanism within this model is straightforward.

This adaptable nature of the refreezing parameter allows for flexibility and refinement in light of

more comprehensive insights gained from subsequent studies. A more thorough discussion on this

topic could be found in chapter 3.6 Refreezing.

4.3.3 Unloading Factor

The subsequent parameter to discuss is the unloading factor. Much of the algorithm pertaining to

this factor is rooted in research conducted by Hedstrom and Pomeroy (1998). Formulas for both

the maximum load and interception efficiency were obtained through this research. The formula

for unloading was slightly altered. Hedstrom delineates an exponential decay with the unloading

rate coefficient as the exponent’s base, set to the value of ‘e’. In the modified version, the approach

remains exponential decay, but the unloading rate coefficient is integrated into the base of the

formula. Consequently, a fixed percentage defined by the unloading factor of the initial snow load

in the canopy is shed every day. This approach appears more intuitive and should still yield similar

outcomes. With respect to Table 10, this method seems to perform well. Approximately 95% of

the southern snow accumulation time in the canopy was accurately predicted. Further insights are
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provided in Figure 9. Decreases in canopy SWE occur much more rapidly than the 10% per day

rate implied by unloading. As a result, it’s plausible to assume that in this model, most of the

reduction in canopy SWE occurred due to melting and sublimation rather than unloading. This

complexity makes evaluating unloading challenging. However, despite this intricacy, the model’s

outcomes consistently match the observed data, whether due to factors that are comprehensible

or those that remain unknown. Due to the difference in model performance for south and north

facing canopy a split routine for south and north facing canopy could improve model results in the

future.

4.3.4 Canopy Coverage and LAI

Shifting focus to the factors affecting snow processes in canopy, both canopy coverage and LAI

play pivotal roles in influencing refreezing and sublimation processes. The values utilized for the

simulations in this study are mean cluster values extracted automatically from Geissler, Rathmann,

and Weiler (2023). It’s worth noting that, for instance, the open and exposed cluster does not truly

exhibit a canopy coverage of 0.4. This value arises due to branch overlap at the cluster’s edge areas

or the presence of small bushes in open spaces. This kind of vegetation plays a role distinct from

that of a fully developed forest. Such vegetation is rapidly covered by snow and subsequently ceases

to significantly impact snow processes. Nevertheless, the decision was made to incorporate these

parameters values into the model. The rationale behind this decision is that if these clusters are

to be derived from future work using satellite imagery or LiDAR data, these artefacts will persist.

Consequently, it was sensible to integrate these parameters into the simulation.

4.3.5 Degree-Day-Factor Calibration

A variety of DDF values have been documented in literature, with their specifics influenced by the

location of the model application. An essential differentiation can be made between DDF values

for snow and ice. Notably, the DDF employed in this model was designed exclusively for simulating

snow-melt. Drawing from the methodology presented in Hock (1999), the model integrates a base

DDF with a radiation DDF.

The model’s radiation-based DDF extends the base DDF to 2.5 ◦C−1day−1 at noons in April. No

DDF is calculated when the model state is in “off” position. For more detailed information see
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Figure 12 in the appendix. Conventionally, DDF values exhibit an upward trend with increasing

altitude, varying due to seasonal changes, cloud cover, and specific events such as ROS, as noted

in (Ismail et al. 2023).

Considering the amalgamation of these factors and conducting comparisons with other snow models

like (Saelthun 1996; Valery 2010; “SNTHERM” 2012), the DDF range adopted in this study appears

plausible. In reference to Figure 8, the observed melt rates demonstrate a fitting correspondence

(with the exception of the ROS event).

It’s worth considering that the sublimation, which was unaccounted for in the ∆Snow modelled

SWE data, could potentially explain the discrepancy of slightly under 200 mm at the 2020/21

season’s end between the results of Geissler, Rathmann, and Weiler (2023) and the simulation data

(Figure 8). Therefore this is not due to underestimated melt rates. Underestimated melt rates

in April 2022 were reported to be caused by a shara-dust event, decreasing albedo and therefore

increasing melt (Geissler, Rathmann, and Weiler 2023). This is not captured by the model.

4.3.6 Snowfall Temperature

The average snowfall temperature across the northern hemisphere was reported to be 1.0 ◦C, with

95% of all stations (n = 17.8 million) falling within the range of -0.4 to 2.4 ◦C, as documented

by (Jennings et al. 2018). Notably, the snowfall temperatures used for modelling all four clusters

are well within this range. The proposition of lower snowfall temperatures in forested regions,

influenced by heightened long wave radiation within forests, appears reasonable. It’s important

to acknowledge that snowfall temperature isn’t static; rather, it’s dependent on relative humidity

among other factors. Models that consider this interrelation tend to yield better results compared

to those that do not, as noted by Jennings et al. (2018).

Turning attention to Figure 7, the fixed-threshold temperature approach demonstrates a commend-

able performance. This is especially evident when accounting for the aforementioned sublimation

effects.

Nevertheless, some snow events are not accurately captured. This is exemplified by the early

February event of the 2021/22 period. The model predicted snowfall, which isn’t corroborated by

the Geissler, Rathmann, and Weiler (2023) data. The same is true for the late January event in the

2020/21 season. The magnitude of most other snowfall events was captured well in both seasons.
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These disparities indicate that snowfall temperature is not constant trough the season. Enhancing

the snow module with a bulb-temperature approach could yield improved outcomes, provided

humidity data is accessible. Considering the model’s high sensitivity to the threshold temperature

this could be a starting point for model enhancement. For more information on model sensitivity

look at Figure 13 in the appendix. This prospective extension could potentially be a focus for

future research endeavours, aimed at refining the model’s predictive capabilities.

4.3.7 Shade

The determination of the shading parameter is contingent upon the spatial placement of the clusters.

This shading component finds its incorporation within the radiation portion of the DDF. While

the base DDF remained consistent across all clusters, divergence emerges concerning the radiation

DDF. For the open-intermediate cluster, a 90% reduction was applied to the radiation DDF (with

a 50% reduction for the open shaded cluster).

However, these modifications may potentially result in slightly lower melt rates during the spring of

2021 (as depicted in Figure 6). This observation triggers a consideration: The shading effect might

have been somewhat overestimated. While the shading values themselves appear to be reasonably

set, it’s conceivable that a recalibration could be beneficial.

To address this potential issue, future model iterations could contemplate a dual approach: Dimin-

ishing the influence of the radiation DDF while concurrently elevating the base DDF. This calibrated

adjustment might offer a resolution to the challenges currently encountered in the model.

4.4 Comparison of Annual Sublimation Values

Not specifically parametrized in this model sublimation is a direct consequence of potential evap-

oration. Available energy derived from potential evaporation is calculated and refereed to the

sublimation of snow. This way the amount of potential sublimation is calculated. The referred

values ranging from 125 to 187 mm (refer to Table 7) align with findings from comparable literature

concerning a location at an elevation of 1200 m.a.s.l. (Strasser et al. 2008). Strasser’s outcomes

indicate that the majority of sublimation originates from the canopy when present, a conclusion

corroborated by the model presented in this study. This observation holds true for both forested

and non-forested regions in terms of the amount of sublimation. Further testing in diverse climates
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and altitudes is imperative to validate these outcomes. Accordingly the altitude effect could be

implemented in later versions of the snow module if this proves necessary.

4.5 Hourly and Daily Temperature Input Modelling

A marginal enhancement in model outcomes was observed when employing hourly temperature

data for modelling purposes. In instances where hourly temperature data is inaccessible, modelling

based on daily temperature data remains a viable approach (compare Figure 5 and 6).

However, this proposition does not hold true for the forested clusters. A noticeable difference in

KGE values is evident during validation and calibration period between the two temperature input

methods (compare Table 6). This discrepancy in temperature inputs is also reflected in the reduced

RMSE and MAE values for models utilizing hourly temperature data.

The question for the dominant processes responsible for the anomalous behaviour within this cluster

arises. Comparatively similar seasonal sublimation values are obtained when considering hourly

versus daily temperature inputs (see Table 7). Hence, it is reasonable to assume that sublimation

is not the primary driver behind this observed variance. Notably, disparities in refreezing values

emerge between models employing hourly and daily temperature inputs across all clusters. Hourly

temperature models exhibit an increment in the proportion of refrozen water (see Table 8). This

suggests that the phenomenon of refreezing could play a pivotal role when modelling forested

regions.

Moreover, the temporal distribution of precipitation emerges as another influential factor. Par-

ticularly in clusters characterized by higher snowfall temperatures, such as open intermediate and

open shaded clusters, this variance is more pronounced. This phenomenon is visibly exemplified in

events like early February 2021, where a discrepancy between the SWE modelled using hourly and

daily temperature inputs is discernible in the forested cluster. This trend extends to subsequent

periods of snow fall throughout the remainder of February.

Lastly the inclusion of hourly temperature modelling brings about effects that might not be im-

mediately apparent when solely focusing on the primary model output, which in this case is SWE.

However, when considering the patterns in outflow, the significance of this hourly modelling be-

comes evident. As shown in Figure 10, discernible patterns emerge in the outflow behaviour.
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Notably, periods of warm weather exhibit heightened outflow during daytime and diminished out-

flow during night time when temperatures drop. This is particularly pertinent when the point of

saturation has already been attained. When simulating with daily temperature input this dynamic

is less intense. If the model time step is chosen small enough, higher melt rates during day time due

to radiation effects can be simulated (see Figure 12 in the appendix). Moreover, the occurrence

of refreezing during night time can introduce a slowdown in the process of reaching saturation.

As previously mentioned, the hourly model runs tend to yield increased refreezing rates. These

dynamics potentially hold implications for the behavior of released water on soil surfaces. Higher

outflow during daytime periods might contribute to heightened surface runoff and reduced rates

of infiltration. To comprehensively assess the magnitude of these effects, it is imperative to con-

duct further testing following the implementation of this module in the RoGeR model. Through

such investigations, a clearer understanding of the hydrological consequences stemming from hourly

temperature modelling can be gleaned.

In conclusion, the utilization of hourly temperature data leads to marginal improvements in SWE

modelling outcomes. While the open shaded, open intermediate and open exposed clusters can

be effectively modelled using daily temperature data, this approach is insufficient for accurately

capturing dynamics within the forested clusters. The dissimilarities in refreezing fractions and

the temporal distribution of precipitation underscore the importance of these factors in explaining

the observed discrepancies. Further investigation is warranted to comprehensively elucidate the

underlying processes driving these distinctions in model behaviour. The inclusion of hourly tem-

perature modelling yields subtle yet significant effects on outflow patterns. This bears implications

for surface runoff and infiltration, requiring further evaluation following the implementation of this

module in the RoGeR model.

4.6 Challenges in Rain on Snow Simulation

Rainfall on snow is a frequent contributor to flooding, as noted by Beniston and Stoffel (2016).

Consequently, it holds significance when integrating snow with soil models. Examining the mod-

elled ROS event in December 2021 warrants further discussion. The utilization of daily or hourly

temperature data does not yield distinguishable differences in the overall discharge, nor does it

impact temporal discharge patterns. Under ROS and saturated snow cover conditions, the model

projects a runoff pattern that aligns with the precipitation sequence.
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The input precipitation interval for RoGeR was set at 10 minutes. Additionally a high-resolution

temperature dataset is imperative when simulating runoff patterns during melting conditions. This

becomes evident in the period subsequent to the ROS event, particularly when melting is driven by

temperature (Figure 10). Neither the daily nor the hourly temperature models accurately capture

the melt rates during the ROS event (Figure 5). While the temperature-induced melting rates

match post-ROS period, they underestimate the melting that transpires during the ROS event

itself.

The model distinctly calculates the energy released from warm rain interacting with the snow cover.

The computed rain-induced melt amounts to roughly one-fifth of the temperature-induced melt for

the entire ROS event duration (Table 11). This appears to be adequate for modelling clusters

adjacent to forested regions, such as the open intermediate and open shaded clusters. However, it

falls short when applied to modelling open exposed and forested clusters, where melt rates tend to

be higher.

ROS leads to elevated melt rates in both forested and open areas, surpassing rates in areas proximate

to forests. A comparative study of melt events and associated energy flux measurements on and

from the snow cover yields the following outcomes: In open environments, turbulent heat exchanges

do have a major impact on the distribution of surface energy. During two observed periods of ROS

events within forests, the primary factors influencing this energy balance are the turbulent exchange

of sensible and latent heat, as well as the net longwave radiation (Garvelmann 2014). In clusters

located near forests, wind speed tends to be lower. Moreover, the quantity of energy penetrating

the snow pack from longwave radiation is diminished compared to forested areas. It is possible

that spatial patterns in precipitation distribution result in decreased input of rain energy in regions

close to forests. Further research should focus on elucidating the reasons behind the variations in

melt rates among the clusters under ROS conditions.

4.7 Evaluation of the Cluster Modelling Approach

When evaluating the results of this study, two key points hold significance. Firstly, only one year of

calibration data is available, and similarly, only one year of validation data is accessible. While no

studies have specifically addressed model performance concerning the calibration period for snow

models, there have been studies that compare performance with varying calibration periods for

hydrological models.
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One of these studies evaluated the GR4J model coupled with the snow module CemaNeige. The

evaluation demonstrated a slight improvement in model performance with each new year of calibra-

tion data. However, noteworthy model efficiencies were already observed in the first year, indicated

by the Nash-Sutcliffe Efficiency (NSE) values, which fell within 90% of the maximum achieved NSE

(Ayzel and Heistermann 2021). This suggests that the GR4J conceptual model and the CemaNeige

snow model perform well even with short calibration data periods.

The model developed within the scope of this work is also a conceptual, physically-based model.

This model also does exhibit good performance with a concise calibration time series. A calibration

period of one year proves to be sufficient to yield accurate modelling results for the subsequent year.

This contrasts with the findings of Essery et al. (2009), where a one-year calibration period does

not guarantee satisfactory model outcomes.

Overall, modelling with hourly temperature input ensures good KGE values for all clusters during

the validation season. KGE values during the calibration seasons are even higher. The challenge

of diminished model performance associated with daily temperature input appears to be partly

resolvable through specific calibration for daily temperature input. Further model testing is required

to validate this approach.

The modelled time series for both seasons indicate that particularly in the forested clusters, pro-

cesses are simulated differently based on temperature input resolution. Consequently, future re-

search efforts should concentrate on quantifying these disparities through extensive model testing

using additional test data. Emphasis should be placed on analyzing refreezing, day-night melt

cycles, and accumulation patterns, particularly for the forested cluster. This concerted focus will

contribute to a more comprehensive understanding of the model’s behaviour and capabilities.
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4.8 Future Research: Enhancing Snow Model Performance

In the realm of advancing the capabilities of the snow model, there exist several prospects for

further investigation. This delves into these potential avenues of research, refining the existing

snow model and augment its applicability.

1. Extended model testing with clustered snow data: In the pursuit of improving the current

snow model’s capabilities, future research could delve deeper into extensive model testing us-

ing clustered snow data. This data should match the clustering structure from this studys test

site. By exploring various seasons and examining how the model performs with each distinct

set of conditions, a more comprehensive understanding of its adaptability and robustness can

be gained.

2. Identifying new clusters and model testing: Expanding the scope, researchers could identify

additional clusters that may have been previously overlooked. Testing the existing model

against these newly identified clusters can provide insights into its versatility and potential

limitations under diverse conditions.

3. Extracting cluster data from LiDAR or satellite sources: In a bid to enhance data collec-

tion techniques, a path of exploration involves deriving cluster-specific data from LiDAR or

satellite sources.

4. Integrating with RoGeR and structural adaptations: The future evolution of the snow model

encompasses its integration into RoGeR. As such, investigating potential structural changes

required for seamless incorporation could unveil new opportunities for synergistic modelling

approaches.

5. Application and validation in diverse catchments: To ascertain the model’s adaptability be-

yond its current scope, applying and validating together with RoGeR in various catchments

with abundant validation data holds paramount importance. This step ensures that the

model’s efficacy is tested across a range of environmental and climatic conditions.

6. Upscaling to larger geographic areas: Expanding the model’s domain to encompass larger

geographical areas offers an exciting challenge. Scaling up requires addressing intricate spatial

and temporal dynamics while maintaining accuracy. This endeavour could open doors to

forecasting snow-related phenomena over expansive regions.
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5 Conclusion

The snow module was initially developed for subsequent integration into the RoGeR framework.

A requirement exists for additional assessments to ascertain the compatibility of the model struc-

ture with RoGeR. Clustered SWE data were acquired and assessed for model testing. This was

done to create a model with reduced complexity, input parameter count, and boosted simulation

efficiency.

The model’s input requirements were streamlined to the most essential components. This encom-

passes a time series of temperature and precipitation with varying resolution, and a time series of

daily evapotranspiration. Consequently, a straightforward model structure was formulated, employ-

ing a dual-DDF approach alongside a threshold-based separation for temperature and precipitation.

Furthermore, the model incorporates routines for liquid water, refreezing processes, sublimation and

ROS-events. The input parameters have been reasonably set to represent the underlying physical

processes.

The model has successfully demonstrated its capacity to adequately simulate canopy SWE, based

on this set of input data. Accumulation and ablation rates are predicted well when accounting

for the lack of sublimation in the reference data. Sublimation is evaluated on an annual scale

matching the corresponding values described in literature. Annual refreezing values seem plausible.

No internal errors could be detected in the model’s architecture. Overall, the model has exhibited

commendable performance with only short periods of calibration data.

The quality of the model’s outputs is contingent upon the resolution of input temperature data.

A slight improvement of model results is visible when using hourly temperature as input. The

improvement in simulation results varies in between the clusters. For the forested areas the increase

in model performance is higher than for the other clusters. This divergence is could be attributed

to dissimilarities in processes like diurnal melt cycles, refreezing, and precise distinction between

solid and liquid precipitation. DDF values during day time are higher for hourly temperature input.

The same could be shown for refreezing during night time. As a result hourly temperature data

becomes important when capturing detailed outflow patterns. Precipitation is separated differently

when temperature input resolution changes. This is especially true for the open-exposed and the

forested cluster. Those clusters exhibit the lowest threshold temperature for snowfall. Resulting
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errors accumulate over the season. Enhanced model performance may be attainable by calibrating

specifically for daily temperature data.

A notable factor contributing to diminished model performance pertains to inadequate modelling

of ROS events. ROS occurrences induce distinct melt rates among clusters. Clusters situated

near forested regions displayed lower melt rates compared to both forested and open exposed

clusters. The model notably underestimates melt rates in the forested and open exposed clusters.

Pinpointing the precise cause necessitates future investigations. Potential starting points include

the examination of precipitation distribution, variations in wind speed, and the equilibrium of

longwave radiation.

Future research endeavours concerning this model should adhere to the following trajectory: Ex-

panded model testing with clustered snow data, identification and testing of new clusters, cluster

data extraction from LiDAR or satellite sources, integration with RoGeR and accompanying struc-

tural adaptations, application and validation in diverse watersheds, and scaling to larger geographic

regions. Eventually, these efforts aim to yield simplified, efficient, and robust snow models with

global applicability.
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7 Appendix

7.1 Climate Graphs

2022

2

2022

3

2022

4

2021

11

2021

12

2022

1

2021

4

2021

5

2021

10

2021

1

2021

2

2021

3

2020

10

2020

11

2020

12

0 10 20 30 0 10 20 30 0 10 20 30

−10
0

10
20

−10
0

10
20

−10
0

10
20

−10
0

10
20

−10
0

10
20

−50

0

50

−50

0

50

−50

0

50

−50

0

50

−50

0

50

T
 [°

C
]

P
rec. [m

m
]

Figure 11: Climate graphs for the winter seasons 2020/21 and 2021/22. Precipitation before Richter
correction is plotted (blue). Minimum and maximum daily temperature is shown in red.
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7.2 Increase in Precipitation through Richter Correction

Table 12: Precepitation values before and after Richter correction.

Season Prec. [mm] Richter Prec. [mm] Increase [\%]

2020/21 918.6 1077.0 17.2
2021/22 845.8 990.8 17.1
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7.3 Development of the DDF
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Figure 12: Variation of the DDF in the winter 2021/22 season derived from the open exposed cluster
model run. No DDF is calulated when the snow module is turned off. Two different
DDF values are calculated for canopy (green) and ground (brown) layer.
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7.4 Sensitivity Analysis

Table 13: Appendix: Parameter data intervals for sensitivity analysis.

variable_name min_value max_value

storage_coef 0.04 0.12
unloading_factor 0.01 0.20
canopy_coverage 0.00 1.00

ddf 1.00 2.00
t_snowfall -0.40 2.40

shade 0.00 1.00
lai 2.00 5.00

refreezing_rate 0.05 1.00
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t_snowfall unloading_factor

refreezing_rate shade storage_coef

canopy_coverage ddf lai

0.35 0.40 0.45 0.50 0.55 0.05 0.10 0.15 0.20
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Figure 13: Dotty plots for 50000 model runs with random parameter selection using the Monte
Carlo Method. Parameters vary randomly as shown in the table above. For KGE
calculation the open-shaded cluster hourly temperature timeseries from 2020/21 is used.
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7.5 List of supplied Data and Scripts

• Clima input data (hourly and daily) derived from Raw-climate data with the corresponding

script (ClimaInput)

• Images taken from SnoMoS stations and a time-series with manual derived canopy snow cover

data (SnoMoS)

• Two file obtained from Geissler, Rathmann, and Weiler (2023) containing manual snow mea-

surements labelled with the corresponding clusters for winter season 2020/2021 and 2021/2022

(ManuelSWEMeasurements)

• A time-series containing the mean SWE together with the standard deviation within each

cluster derived from Raw-data modelled by Geissler, Rathmann, and Weiler (2023) with the

corresponding script (SpatialSWE)

• A final ready to use version (v26) of the snow module function with additional script for

reading inputs, writing outputs and execution (SnowModule)

• Data of 8 simulations with daily and hourly temperature input for the 2020/2021 and

2021/2022 winter seasons for all four clusters (ModelOutput)

• A data-set containing 50000 model runs with varying input parameters for the 2020/2021 and

2021/2022 winter seasons used for sensitivity analysis and a script for dotty plot analysis.

The data-set is split in parts of 2000 runs. Hourly temperature input is used. A python script

for creating multiple model runs with varying input is provided aswell (SensitivityAnalysis)

• The RMarkdown source file used to create this thesis (Thesis)
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7.6 Abbreviations

DDF - Degree Day Factor

ESM- Earth System Models

FSM - Flexible Snow Model

HS - Snow Depth

KGE - Kling Gupta Efficiency

LAI - Leaf Area Index

LiDAR - Light Detection and Ranging

MAE - Mean Absolute Error

m.a.s.l - Meters Above Sea Level

NSE - Nash-Sutcliffe Efficiency

RMSE - Root Mean Squared Error

RoGeR - Runoff Generation Research

ROS - Rain on Snow

SWE - Snow Water Equivalent

SnoMoS - Snow Measuring Station

SNOW-MIP - Snow Model Intercomparison

UAV - Unmanned Aerial Vehicle
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