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 V Abstract 

The risk of increasingly frequent and intense droughts threatens water and food security, 

especially for developing regions such as Central America. Central America is classified as a 

tropical region (A) by Köppen and Geiger, but there are regional and local differences regarding 

the climate. According to Köppen-Geiger's definition, there are three tropical climate classes, 

Af - rainforest, Am - monsoon and Aw savannah, as well as aride (B) and temperate (C) 

climates. This work aims to compare the different tropical climates with respect to drought. 

With the Standard Precipitation Index (SPI) the severity, duration and spatial extent of droughts 

in regions with different climates and hydrological regimes can be compared. The SPI is 

calculated with a parametric probability distribution function (PDF), which can lead to over- or 

underestimated SPI values depending on the choice of the PDF. The A-D test, S-W test and 

AIC were used to analyze which two-parametric distribution function is best suited for each 

(tropical) climate zone and accumulation period. The Gamma, Gumbel, Lognormal, Logistic, 

Normal and Weibull distributions as well as the accumulation periods 1, 3, 6, 9, 12 and 24 

months were used. Precipitation data from the CHIRPS dataset in 0.25° spatial resolution were 

used for the time series from 1980 to 2019. The considered area is the land mass in the range 

of 25° North to 0° North and 95° West to 75° West. The results show on the one hand a 

difference between the accumulation periods 1 to 12 months and the very long accumulation 

period 24 months. On the other hand, they demonstrate a difference between the dry and rainy 

season of the seasonal climate zones Aw, Am and Csw. Thus, the Gamma distribution is 

suggested all year round for the non-seasonal climate zones Af, B and Csw and in the wet 

season of the seasonal climate zones Aw, Am and Csw of accumulation period 1 month to 12 

months. For the very long accumulation periods (24 months) it is recommended to calculate the 

SPI with the most appropriate distribution for each grid cell. The Lognormal distribution is 

recommended for all accumulation periods in the dry period of seasonal climates. 

Keywords: Drought, Central America, Climate zones, SPI, probability distribution 
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VI Zusammenfassung 

Das Risiko zunehmend häufiger und intensiver Dürreperioden bedroht die Wasser- und 

Ernährungssicherheit, insbesondere für Entwicklungsregionen wie Zentralamerika. 

Zentralamerika wird nach Köppen und Geiger als tropische Region (A) eingestuft, jedoch gibt 

es regionale und lokale Unterschiede in Bezug auf das Klima. Drei tropische Klimaklassen Af 

– Regenwald, Am - Monsoon und Aw – Savanne sowie aride (B) und temperierte Klimata (C) 

sind nach der Definition von Köppen-Geiger vertreten. Ziel dieser Arbeit ist, die verschiedenen 

tropischen Klimazonen in Hinblick auf Dürre zu vergleichen. Mit dem 

Standardniederschlagsindex (SPI) können Intensität, Dauer und räumliche Ausdehnung von 

Dürren in Regionen mit unterschiedlichen Klimata und hydrologischen Regimen verglichen 

werden. Der SPI wird mit einer parametrischen Wahrscheinlichkeitsfunktion berechnet, welche 

je nach Wahl zu über- oder unterschätzen SPI-Werten führen kann. Dazu wurde anhand von A-

D Test, S-W Test und AIC analysiert, welche zwei-parametrische Verteilungsfunktion am 

besten für die jeweilige (tropische) Klimazone und Akkumulationsperiode geeignet ist. 

Verwendet wurden Gamma, Gumbel, Lognormal, Logistic, Normal und Weibull Verteilung 

sowie die Akkumulationsperioden 1, 3, 6, 9, 12 und 24 Monate. Hierfür wurden 

Niederschlagsdaten aus dem CHIRPS-Datensatz in 0,25° räumliche Auflösung für die Zeitreihe 

von 1980 bis 2019 verwendet. Das betrachtete Gebiet ist die Landmasse im Bereich von 25° 

Nord bis 0° Nord und 95° West bis 75°West. Die Ergebnisse zeigen einerseits einen 

Unterschied zwischen den Akkumulationsperioden 1 bis 12 Monate und der sehr langen 

Akkumulationsperiode 24 Monate. Andererseits weisen sie einen Unterschied zwischen 

Trocken- und Regensaison der saisonalen Klimazonen Aw, Am und Csw auf. Folglich kann 

ganzjährig für die nicht saisonalen Klimazonen Af, B und Csw und in der Regenzeit der 

saisonalen Klimazonen Aw, Am und Csw von Akkumulationsperiode 1 Monat bis 12 Monate 

die Gamma Verteilung empfohlen werden. Für sehr lange Akkumulationsperioden (24 Monate) 

wird empfohlen, den SPI mit der für jedes Grid am besten passenden Verteilung zu berechnen. 

Die Lognormalverteilung wird für alle Akkumulationsperioden in der Trockenperiode der 

saisonalen Klimazonen empfohlen. 

Stichwörter: Dürre, Zentralamerika, Klimazonen, SPI, Wahrscheinlichkeitsverteilungen 
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1. Introduction 

1.1 Current situation and definition of drought 

Changes in the Earth's climate have led to changes in the frequency and intensity of various 

hydrometeorological processes such as precipitation, temperature, evaporation and runoff 

(Crausbay et al., 2017; Liu et al., 2019). With the increasing concentrations of greenhouse gases 

in the atmosphere, the precipitation-related risks of climate change will almost certainly grow 

(Touma et al., 2015). Future climate scenarios indicate general warming and lower precipitation 

trends (Imbach et al. 2018, van Oldenborgh et al. 2013) with increased extremes (Nakaegawa 

et al, 2014). The intensification of human activities, including urbanization, deforestation, 

construction of water reservoirs, contributes to an accumulation of drought events (Trenberth 

et al. 2014). Drought can be defined as a lack of water over a long period of time or as a quantity 

of water that is below average in the inspected water circulation system during a certain period 

(Khan et al., 2018; Oloruntade et al., 2017). It is one of the most frequent and costly natural 

disasters, with immense impacts on human society and ecosystems (Mishra & Singh 2010; 

Wilhite 2000). 

There are three types of drought (Keyantash and Dracup, 2002; Mishra and Singh, 2010): (1) 

Meteorological drought, a precipitation deficit compared to the average values over a certain 

period. (2) Hydrological drought, characterized by an insufficient water supply compared to 

established water uses and management approaches, often related to the geology of the basin. 

(3) Agricultural drought characterized by a period of insufficient soil moisture and associated 

crop failures. Some publications also define a fourth category: (4) Socio-economic drought, the 

inability to meet the water needs of a concerned society (e.g. Choi et al., 2013; Heim & Brewer, 

2012). Drought is triggered by below-average rainfall, typically accompanied by high summer 

temperatures (Diffenbaugh et al. 2015; Diego Galván et al. 2015). The duration, intensity, 

spatial extent and local socio-economic conditions determine the severity of droughts (Wilhite, 

2000). In the future, periods of drought will become more frequent, more intense, longer and 

therefore more severe (Touma et al., 2015). As a result, drought is an important planning 

criterion for the sustainable management of water resources (Crausbay et al., 2017; Liu et al., 

2019). Droughts can also result in humanitarian disasters, major agricultural as well as 

economic losses and harm ecosystems (Lesk et al., 2016; Touma et al., 2015; Van Loon et al., 

2016). Therefore, the identification of drought-prone areas and the prediction of drought periods 

are of immense interest for research and from a political point of view. The detected results can 

help to respond to drought events and reduce socio-economic costs (Mishra & Singh 2011). 



- 11 - 

 

1.2 Study area and local drought on site 

The growing risk of increasingly 

frequent and more intense 

droughts threatens water and food 

security, especially for 

developing regions such as 

Central America. This area 

includes southern Mexico, 

Guatemala, Belize, El Salvador, 

Honduras, Nicaragua, Costa Rica, 

Panama and a part of north 

Columbia. Central America is an 

isthmus bridge  between two 

continents, bordering the Pacific Ocean in the southwest as well as the Caribbean Sea in the 

northeast (Figure 1). In a few kilometers of horizontal distance, the complex topography varies 

from volcanic peaks of about 4000 m above sea level, jungle-covered alluvial lowlands and 

rugged coastlines to lagoons (Imbach et al., 2018, Marshall, 2007). Honduras ranks first in the 

long-term climate risk index, Nicaragua and Guatemala are listed in the top ten (Kreft et al., 

2017). Those states are already suffering from the effects of climate change as a result of 

historical warming (Aguilar et al., 2005). Vulnerability to climate extremes is high due to the 

economy's strong dependence on agriculture and hydropower. Small farmers are a particularly 

vulnerable group in the happening of extreme climate changes (Imbach et al.2017). 

Central America is classified as a tropical region (A) according to Köppen and Geiger. 

However, there are regional and local differences in climate, all three tropical climate classes 

are represented: Af - rainforest, Am - monsoon and Aw – savannah (Beck et al. 2018). Due to 

the tropical-maritime location, the temperature fluctuations in the entire region are low. 

Temperature is mainly influenced by altitude and distance from the oceans. In general, it 

decreases with enlarging altitude and increases with distance from the coast (Clawson, 1997). 

The warmest months generally occur at the end of the wet season in October. Precipitation is 

the most important meteorological element (Taylor and Alfaro, 2005). Central America has a 

rainy season from May to October (Hastenrath, 1967), which is characterized by two 

precipitation maxima in May/June and September/October. Both of them are essential for the 

planting and harvesting cycle (Bacon et al., 2017; Magaña et al., 1999). In the dry corridor of 

Central America, they are separated by a period with less precipitation, the "Mid-Summer-Dry" 

Figure 1: Central America topography with republics with their 

capitals (https://www.britannica.com/place/Central-America) 
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(Avelino et al., 2015). The extended dry season is between November and May. On the 

Caribbean coasts it rains all year round, the most from October to December and the least 

between January and April (Magaña et al., 1999). Due to north-eastern trade winds, the annual 

precipitation sum decreases from east to west (Martinson, 1993), the Caribbean side receives 

between 4000 and 6500 mm of precipitation per year, while the Pacific coastal areas receive 

less than 1500 mm of precipitation per year (Bundschuh et al., 2007). Due to climate change, 

precipitation in Central America will generally decrease and the entire region is expected to 

warm, especially in the northern part (Imbach et al. 2018). The severity and frequency of 

droughts in subtropical and tropical areas are increasing (Touma et al., 2015). The midsummer 

drought may spread to regions that have not been affected in the past. In regions, in which it 

already occurs in the presence, its severity may increase in the future (Imbach et al. 2018). 

Shifts in the rainy season or a longer, more extreme Mid-Summer-Dry-period increase the 

probability of crop failures, pest outbreaks and plant diseases (Avelino et al., 2015). In the past 

20 years, severe droughts affected large parts of Central America simultaneously, one in the 

year 2001 (Ramirez and Brenes, 2001) and another one 2014, from April to August (Chen et 

al. 2017). The drought in 2014 was the heaviest since 2001 (Chen et al, 2017). 

The countries of Central America, except for Mexico, are relatively small in population, area, 

and size of economies (Acosta et al., 2017). Including total Mexico, overall population was 

177.6 million in 2016 with an annual population increase of about 1.2 % (United Nations, 

2019). Central America has got the highest poverty rates in Latin America, about 42 % of the 

region’s population is poor or extremely poor (Krozer, 2010). The largest part of the regional 

economy is based on agriculture, more than two thirds of the population in Guatemala, 

Honduras and Nicaragua are dependent on it (Imbach et al., 2018). The most important export 

product in Central America is Coffee with a value of $3.70B in 2011, followed by bananas 

($1.64B), sugar ($1.03B) and palm oil ($0.68B) (FAO, 2012). Food security mainly depends 

on maize, rice and beans (Espíndola et al. 2005). Nicaragua is highly vulnerable to climate 

change (Bouroncle et al., 2017) especially for coffee (Läderach et al., 2017), maize and bean 

(Gourdji et al., 2015). The predicted losses in coffee production threaten national economies 

and the regional and global supply chains of the respective industries (Bunn et al., 2015). Food 

security can also be affected by interruptions in production. Furthermore, food security could 

be harmed by disturbances in the production of e.g. corn and beans. The supply of drinking 

water becomes more expensive due to reduced water levels in surface and underground water 

bodies, which leads to increased costs of water abstraction; alternative ways of drinking water 

supply may be necessary (Brenes, 2010). 
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1.3 Drought monitoring with SPI 

Various indices have been developed to quantify the severity of drought, which have been 

applied to different regions and conditions (e.g. Keyantash and Dracup, 2002, Quesada 

Montano et al., 2015; Vicente-Serrano et al., 2010). Recommended by the World Metrologic 

Organization as a meteorological drought index is the well-reviewed and globally applied 

standardization precipitation index (SPI) (Hayes et al., 2011). SPI values represent the deviation 

from the typical cumulative precipitation over the months under consideration for a specific 

location and season (McKee et al., 1993). Variable time scales allow the evaluation of 

meteorological drought with short accumulation times e.g. 1 to 3 months, agricultural drought 

with medium accumulation times e.g. 3 to 6 months and hydrological drought with long 

accumulation times e.g. 6 to 12 months (Lloyd-Hughes and Saunders, 2002). The fundamental 

strength of the SPI is that it can be calculated for a variety of time scales and is based on 

precipitation only. This makes it particularly suitable for regions with limited data availability 

and for comparing drought conditions in regions with significantly different climates (McKee 

et al., 1993). 

The SPI is based on a representative parametric probability distribution function (PDF), the 

choice of which can lead to exaggerated or reduced SPI values and thus to potentially incorrect 

estimates of the timing, intensity and duration of droughts (Guenang et al., 2019; Stagge et al., 

2015). Most recent studies have analyzed only 2-parameter distribution functions (Guenang et 

al., 2019; Blain et al., 2018; Stagge et al., 2015; Lloyd-Hughes and Saunders, 2002), since 

testing the quality of 3-parameter distributions carries the risk of overfitting (Stagge et al., 2015; 

Sienz et al., 2012). To describe the observed precipitation best, McKee et al (1993) originally 

recommended a two-parameter Gamma distribution. This distribution is one of the most used 

today to calculate the SPI. As a result, many studies that include the SPI directly use the Gamma 

distribution (e.g. Mo and Lyon, 2015; Ma et al., 2015; Yuan and Wood, 2013; Yoon et al., 

2012). The normality of the resulting SPI distribution is not previously evaluated by goodness-

of-fit tests or other statistical analyses. Several authors, on the other hand, point out that for new 

datasets and regions, the distribution functions should be investigated before they are applied 

(Blain et al., 2018; Stage et al., 2015; Sienz et al., 2012; Touma et al., 2015). In some regions 

of the world, the adjusted Gamma distribution function describes precipitation inadequately 

(Blain et al., 2018; Blain and Meschiatti, 2015; Guenang et al., 2019; Lloyd-Hughes and 

Saunders, 2002; Naresh Kumar et al., 2009; Stage et al., 2015; Sienz et al., 2012; Touma et al., 

2015). 
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Stagge et al. (2015) have developed a methodology to determine the most appropriate 

probability functions in a geographical region. They found that the Gamma and Weibull 

functions have broad effectiveness across often contrasting regions of Europe. Lloyd-Hughes 

and Saunders (2002) have also identified Gamma distribution as the best distribution function 

for Europe. The results of Stagge et al (2015) were developed using the watch forcing data set 

and for the European geographical region but were not evaluated for other data sets or 

geographical regions. For SPI calculation in Central Africa, the use of the Weibull and Gamma 

functions leads to good SPI results on short time scales (1 to 9 months). For a 12-month time 

scale, it is recommended to choose the distribution function with the best fit for each grid point 

to obtain good SPI results and to ensure a better description of the drought (Guenang et al., 

2019). Additionally, in China, the Gamma distribution scores best on almost all-time scales 

when calculating the SPI. However, on the 1-month scale, the Log-Logistic and Weibull 

distribution have a higher percentage of the best relative fit than the Gamma distribution (Wang 

et al., 2019). Along with three goodness-of-fit tests, it was determined that the two-parameter 

Gamma distribution among the two-parameter functions is the most appropriate distribution for 

calculating the SPI in the State of São Paulo, Brazil (Blain et al., 2018). The same conclusion 

is drawn by other studies such as Meschiatti and Blain (2016) and Awange et al. (2016), who 

also used the Gamma distribution to calculate the SPI in São Paulo State. All these studies agree 

that either the Weibull or Gamma distribution is the most appropriate, depending on the 

accumulation period and/or location. The candidate probability density functions worldwide 

were tested by Touma et al (2015) and Pieper et al (2020). Touma et al (2015) deal only globally 

with accumulation periods between 3 and 12 months and conclude that the Gamma distribution 

is best suited to calculate the SPI. Pieper et al. (2020) also show that the Gamma distribution is 

sufficiently suitable to calculate the SPI. 

In most studies, candidate distribution functions are tested with the goodness of fit tests 

(Guenang et al., 2019; Blain et al., 2018; Blain and Meschiatti, 2015; Stagge et al., 2015; Touma 

et al., 2015; Lloyd-Hughes and Saunders, 2002). The Kolmogorov-Smirnov test (K-S test) is 

often used (Guenang et al., 2019; Touma et al., 2015), but it has a high probability of 

erroneously accepting a non-normal distribution if the parameters of the PDF candidate were 

estimated from the same data on which the tested distribution is based (Blain et al., 2018; Blain 

and Meshiatti, 2015; Stage et al., 2015). It also proved to be the least sensitive to proposed 

distributions (Stagge et al., 2015). Therefore, the goodness of fit has been tested in other studies 

either with an adaptation of the K-S test, the Anderson-Darling test (A-D test) (Blain et al., 

2018; Stage et al., 2015) and/or with the Shapiro-Wilk test (S-W test) (Blain et al., 2018; Blain 
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and Meshiatti, 2015; Stage et al., 2015). The Anderson-Darling test is inferior to the Shapiro-

Wilk test and gives more weight to the tails than does the K-S test (Blain et al., 2018; Stagge et 

al., 2015). The S-W test for testing the normality of the calculated drought index effectively 

differentiates between candidate distributions and provides similar results to the K-S and A-D 

tests with more sensitive results. It is also easy and quick to implement, eliminating the need 

for Monte Carlo simulations of critical test values. Spatial patterns similar to the relative 

rankings calculated by AIC are generated (Stagge et al., 2015). Nevertheless, the Shapiro-Wilk 

test is unreliable to assess SPI normality (Naresh Kumar et al., 2009). K-S, A-D and S-W test 

are unable to produce a relative ranking of the performance of the distribution functions for a 

given location and accumulation period and therefore are unsuitable for determining the best 

performing PDF (Blain et al., 2018). This is because these suitability tests are designed to 

provide a binary response (Blain et al., 2018). The goodness-of-fit tests are well suited to 

analyze whether SPI distributions are normally distributed, but it’s more important which PDF 

maximizes the normality of the resulting SPI distribution. The use of relative ratings such as 

mean absolute errors (Blain et al., 2018), Akaike's Information Criterion (AIC) (Stagge et al., 

2015; Sienz et al., 2012) or deviations from expected SPI categories (Sienz et al., 2012) is 

recommended instead. 

  



- 16 - 

 

1.4 Problem and objective 

SPI studies covered both North and South America (Blain et al., 2018; Pieper et al., 2020), but 

not Central America, and there is no study on this region yet. This study attempts to close the 

knowledge gap regarding Central America. Previous studies examine the best performance of 

the PDF only over the respective overall area considered. In contrast, I will divide Central 

America into its climate zones by Köppen and Geiger to analyze whether the climate regime is 

decisive for the best performing PDF. Drought is mainly influenced by precipitation and 

temperature (Diffenbaugh et al. 2015; Diego Galván et al. 2015), which are also the criteria for 

climate zones according to Köppen and Geiger (Köppen, 1936). A correlation between drought 

indices such as the SPI and climate zones might therefore be possible. To analyze the best 

performing PDF I will use the Anderson-Darling test, the Shapiro-Wilk test and the AIC for 

comparing the results. I focus on the SPI accumulation periods of 1, 3, 6, 9, 12 and 24-months 

and test the performance of the Gamma, Gumbe l, Lognormal, Logistic, Normal and Weibull 

function. 

The aim of this thesis is to analyse the best performing PDF for the different (tropical) climate 

zones in Central America using the following hypotheses: 

I. To derive the SPI, the Gamma (accumulation period ≥ 3) and Weibull distribution 

(accumulation period < 3) functions shows the best performance for each of the tropical 

climate zones in Central America. 

II. There are no seasonal differences in the adjustment of candidate distributions for the 

SPI for different accumulation periods in the Central American climate zones. 

III. Various distributions estimate the area under drought (SPI < 1.5) differently compared 

to the best fit (for each grid cell, the best fit distribution is used to calculate the SPI). 
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2. Data and methods 

2.1 Overall structure and datasets 

First, the climate zone according to Köppen and Geiger was calculated for each grid 

(0.25°x0.25°). For the following evaluations, all grids of a climate zone were considered as one, 

whereby the arid climates were combined to a climate zone and the temperate zones were 

divided into seasonal and non-seasonal. Then the SPI was calculated with the distribution 

functions Gamma, Gumbel, Normal, Lognormal, Logistic and Weibull. The accumulation 

periods of 1, 3, 6, 9, 12 and 24 months were used. The calculation outputs two parameters for 

each distribution with the accumulation period. With this parameter, the Anderson-Darling 

rejection rate is calculated for the goodness of fit. As a further goodness of fit test, the Shapiro 

and Wilk test, which examines the SPI values directly was used. To illustrate the best relative 

fit the AIC was calculated. 

The area focused on is Central America in the range of 25° North to 0° North and 95° West to 

75° West. The quality and quantity of the data used determines the reliability of the drought 

characterization. Quesada Montano (2019) recommends to supplement station data with 

CRN073 and/or CHIRPS for the characterization of droughts in Central America.  All analyses 

are performed with the Climate Hazards Group Infra-Red Precipitation with Station (CHIRPS) 

dataset, an over 30 years quasi-global gridded rainfall dataset, starting in 1981 through the near-

present (Funk et al., 2015). CHIRPS uses satellite imagery at the 0.05° spatial resolution and 

in-situ station data to generate a daily climate dataset (Funk et al., 2015). For this work 

precipitation data from the CHIRPS dataset in 0.25° spatial resolution for the monthly time 

series from 1980 to 2019 are used. 

There is also temperature data needed for the climate classification. Therefore, I used a CHIRTS 

dataset from 1983 to 2016 in 0.25° spatial resolution. The data is either available on a monthly 

or a daily base. In this case, the monthly data collection was used. 
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Divide Central America into climate classes 

Calculated with the Köppen and Geiger 

classification for each Grid 

 

Climate zones for evaluation: Am, Aw, 

Af, arid climates were combined to B and 

the temperate zones were divided into 

seasonal Csw and non-seasonal Cf 

Size structure: 

 
d  

SPI calculation with different distribuion functions 

Distribution functions: Gamma, Gumbel, Normal, Lognormal, Logistic and Weibull  

Accumulation periods: 1, 3, 6, 9, 12 and 24 month 

 

SPI calculation outputs two parameters per distribution function and month (January to 

December) 

d 

Goodness of Fit for each climate class 

Rejection Frequency for Anderson-

Darling and Shapiro and Wilk test with 

the output from SPI calculation 

- In total for the climate zones 

- Per Month and climate zone 

Best relative fit with AIC: 

- Dry season (January, February, March) 

- wet season (July, August, September) 

d 
Implementation on drought period 2014/2015 

SPI on July 2014 

- Gamma, Logistic, 

Lognormal and best 

fit (according to 

AIC) distribution 

- Accumulation period 

1, 6 and 12 months 

Area under drought from 

january 2014 to december 

2015 

- Gamma, Logistic, 

Lognormal and best 

fit (according to 

AIC) distribution 

- Accumulation period 

1, 6 and 12 months 

Difference between Area 

under drought best fit and 

Gamma/Logistic/Lognormal 

distribution from january 

2014 to december 2015 

- Accumulation period 

1, 6 and 12 months 

Figure 2: Float chart of the overall structure for evaluation 
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2.2 Köppen-Geiger climate classification 

The Köppen-Geiger climate classification described by Peel et al. (2007) was used (Table 1). 

This classification is almost identical to the last publication of Köppen (1936) and as well 

applied by Kriticos et al (2012) and Beck et al (2018). There are two differences to Köppen 

(1936): Firstly, as the exception of the boundary between the temperate (C) and cold (D) 

climates the temperature of the coldest month >0 °C, instead of >–3 °C was used (followed 

Russell, 1931). Secondly, within the C and D climates, the sub-climates s (dry summer) and w 

(dry winter) were made exclusive for each other. These differences are not relevant for the 

tropical climate zones regarded in this thesis. The tropical (A), temperate (C), cold (D) and 

polar (E) climates are mutually exclusive, but each zone may overlap with the arid zone (B) 

(Beck et al., 2018). Hence, climate type B was given precedence over climates A, C, D and E. 

The classification was performed for the monthly CHIRPS and CHIRTS data sets with R. 

Table 1: Overview of the Köppen-Geiger climate classes occurring in Central America including the 

defining criteria. Adapted from Peel et al. (2007). Tcold = the air temperature of the coldest month (°C); Pdry 

=precipitation in the driest month (mm month−1); MAP = mean annual precipitation (mm y−1), threshold = 

20×MAT if >70% of precipitation falls in winter, 20×MAT+280 if >70% of precipitation falls in summer, 

otherwise 20×MAT+140; MAT = mean annual air temperature (°C); Thot = the air temperature of the hottest month 

(°C); Psdry = precipitation in the driest month in summer (mm month−1); Pwdry = precipitation in the driest month 

in winter (mm month−1); Pswet = precipitation in the wettest month in summer (mm month−1); Pwwet = precipitation 

in the wettest month in winter (mm month−1), T4th_hot = temperature of the 4th warmest month (°C) 

Letter symbol Description Criterion 

A   Tropical Tcold ≥18 

 f  - Rainforest Pdry ≥60 

 m  - Monsoon Not (Af) & Pdry ≥100-MAP/25 

 w  - Savannah Not (Af) & Pdry <100-MAP/25 

B   Arid MAP <threshold 

 W  - Desert MAP <threshold/2 

 S  - Steppe MAP ≥threshold/2 

  h - Hot MAT ≥18 

  k - Cold MAT <18 

C   Temperate 0< Tcold <18 & Thot>10  

 s  - Dry summer Psdry <40 & Psdry < Pwwet/3 

 w  - Dry winter Pwdry<Pswet/10 

 f  - Without dry season Not (Cs) and (Cw) 

  a - Hot summer Thot ≥22 

  b - Warm summer Not (a) & T4th_hot > 10 
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2.3 Standardization Precipitation Index (SPI) 

2.3.1 Calculation with different candidate distribution functions 

The SPI evaluates and characterizes the precipitation ratio of a certain period (e.g. month, 

quarter and half-year) in relation to the respective normal values. For the calculation, the 

precipitation is summed over k months (accumulation period). The distribution function of the 

precipitation values is transformed into a standard Normal distribution (𝜇 =0, 𝜎 =1). For each 

precipitation value, the position specified in standard deviations can be given in the distribution 

function, which corresponds to the SPI value (McKee et al., 1993; Guttman, 1999; Lloyd-

Hughes and Saunders, 2002). The SPI is limited to the range of [-3, 3] to obtain realistic results. 

The probability of leaving this range is very low (<0.2 %) (Stage et al., 2015). A negative SPI 

value indicates a period that was drier than normal, a positive SPI value indicates a period that 

was wetter than normal. A drought occurs when the precipitation value is less than minus one 

standard deviation. Drought intensity is arbitrarily defined for values of the SPI (Fehler! 

Verweisquelle konnte nicht gefunden werden.). An SPI of less than 1.5 is often used as a 

threshold for severe droughts. More detailed information can be found in McKee et al. (1993). 

Zero-precipitation values strongly distort the SPI results. To prevent this, the probability of 

zero-precipitation events (p0) was estimated by the "center of gravity" estimation based on the 

zero distribution. The SCI R package from Gudmundsson and Stagge (2014) is used for 

programming, which contains the described approach. 

Table 2: The classification of SPI after McKeen et al. (1993) 

SPI Values Drought Category 

0 to -0.99 Mild drought 

-1.00 to -1.49 Moderate drought 

-1.5 to -1.99 Severe drought 

≤ -2.00 Extreme drought 

The time scales considered for the SPI in this thesis are 1-, 3-, 6-, 9-, 12- and 24-months and 

the evaluated distribution function will be the (a) Gamma, (b) Gumbel,  (c) Normal, (d) 

Lognormal, (e) Logistic and (f) Weibull distributions. Area under drought [%] is defined as 

surface with drought category severe and extreme drought (SPI ≤ -1.5) per climate class. All 

distribution functions are calculated with two parameters as defined below: 
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(a) Gamma distribution: 

𝑓 (𝑥) =  
1

𝛼𝛽𝛤 (𝛽)
𝑥𝛽−1 𝑒−𝑥 𝛼⁄ , 𝑥 > 0 (1) 

Where: 𝛤 (𝑐)  =  ∫ 𝑒−𝑥𝑥𝑐−1𝑑𝑥

∞

0

 (2) 

(b) Gumbel distribution: 

𝑓 (𝑥) = ( 
1

𝜎
) 𝑒−𝑧(𝑥)−𝑒−𝑧(𝑥)

,    − ∞ <  𝑥 <  ∞ (3) 

Where: 𝑧 (𝑥)  =  
𝑥 −  𝜇

𝜎
 (4) 

(c) Normal distribution: 

𝑓 (𝑥) =
1

𝜎√2𝜋
exp [−

1

2
(

𝑥 −  𝜇

𝜎
)

2

] , −∞ <  𝑥 <  ∞ (5) 

(d) Lognormal distribution: 

𝑓 (𝑥)  =  
1

𝛽𝑥√2𝜋
𝑒

[−
1
2

(
𝑙𝑜𝑔

𝑥
𝛼

𝛽
)

2

]

, 𝑥 >  0 
(6) 

(e) Logistic distribution: 

𝑓(𝑥)  =  
𝜆𝜅𝜅𝑒𝜅𝑥

[1 +  (𝜆𝑒𝑥)𝜅]2
, −∞ <  𝑥 <  ∞ (7) 

(f) Weibull distribution: 

𝑓 (𝑥)  = (
𝛽

𝛼
) 𝑥𝛽−1 𝑒𝑥𝑝 [− (

1

𝛼
) 𝑥𝛽] , 𝑥 >  0 (8) 
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2.3.2 Goodness of fit testing 

The parametric probability function, with which the SPI is calculated, can lead to over- or 

underestimated SPI values depending on the choice. Stagge et al. (2015) developed a 

methodology to determine the most appropriate probability function in a geographical region. 

Based on Stagge et al. (2015), the performance of each probability distribution function is tested 

by different goodness-of-fit tests. I used the Anderson-Darling (A-D) test as well as Shapiro 

and Wilk (S-W) test.  

The A-D statistics are used to determine how well data corresponds to a distribution. It is a 

modification of the Kolmogorov-Smirnov (K-S) (Stephens, 1986) test and gives more weight 

to the tails than the K-S test. The test statistic is: 

𝐴 = −𝑛 −
1

𝑛
∑ ∑

𝑛

𝑖=1

[2𝑖 − 1][𝑙𝑛(𝑝(𝑖)) + 𝑙𝑛(1 − 𝑝(𝑛−𝑖+1))] (9) 

with 𝑝(𝑖) = 𝛷([𝑥(𝑖) − �̅�]/𝑠), Φ is the cumulative distribution function of the standard normal 

distribution, and �̅� and s are mean and standard deviation of the data values (Stephens, 1986). 

Furthermore, the p-value is computed from the statistic: 

𝑍 = 𝐴(1.0 +
0.75

𝑛
+

2.25

𝑛2
) (10) 

The corresponding p-value is used to test whether the data comes from the selected distribution. 

If the p-value is less than the selected alpha level (0.05), the null hypothesis that the data came 

from that distribution is rejected. In contrast, a p-value of more than the selected alpha level 

does not necessarily mean that the frequency distribution of the data corresponds to the given 

distribution (Stephens, 1986). 

The Shapiro-Wilk test (Shapiro and Wilk, 1965) examines whether a sample is distributed 

normally. This method was first used for the SPI by Naresh Kumar et al. (2009). An S-W test 

is beneficial because it directly tests the final index values, it is independent of the PDF used 

and it has well verified and sensitive critical values. The test statistic is the quotient of two 

estimates of variance: 

𝑊𝑝𝑟 =
𝑏2

(𝑛 − 1)𝑠𝑥
2
 (11) 

with expected variance of the sample under normal distribution b2 and 𝑠𝑥
2 uncorrected sampling 

variance. The null hypothesis that there is a normal distribution of the population is not rejected 
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if the p-value is higher than the defined alpha level. The SW-test has a comparatively high-test 

strength, especially when testing smaller samples with n < 50 (Seier, 2011). 

The distributions were compared relative to each other using the Akaike Information Criterion 

(AIC) (Akaike, 1974; Burnham and Anderson, 2004). It is a mathematical method for 

evaluating how well a distribution fits the data from which it was generated. But it is not a 

statistical test and therefore cannot provide information on the absolute goodness of fit. It 

determines the relative information value of the model using the log-likelihood estimate and 

the number of parameters. All distributions have the same number of parameters (two), which 

reduces the AIC to a measure of logarithmic probability. The log-likelihood is the value that 

describes how probable the model is regarding the data. The formula for AIC is: 

𝐴𝐼𝐶 = −2𝐿𝐿 + 2𝑘 (12) 

where k being the number of independent variables used and LL representing the log-likelihood. 

The distribution that contains the greatest amount of variation with the fewest independent 

variables shows the best fit. The lower the AIC values, the more precisely the distribution fits. 

However, the A-D test is inferior to the S-W test (Blain et al., 2018), which is why the S-W test 

can be considered more meaningful. To determine the best performing PDF, the use of relative 

ratings such as the AIC instead of A-D and S-W test is recommended (Stagge et al., 2015; Sienz 

et al., 2012). So the best fit distribution function at each grid point, called best fit in this study, 

can be chosen in order to expect good SPI results. 
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3. Results 

3.1 Climate regions in Central America 

 

Figure 3: Köppen and Geiger climate classes after Peel et al. (2007) for Central America 

About two thirds of Central America is located in the tropical climate zone (Figure 3). The 

tropical savannah (Aw) has the largest share with 43 %, followed by tropical monsoon (Am, 19 

%) and tropical rainforest (Af, 12 %). Furthermore, arid (B, 15 %) and temperate (C, 11 %) 

climate zones occur in Central America. The largest climate zone outside the tropics is the hot 

arid steppe (BSh) with 13 % of the land mass. All other existing climate zones are below 5 % 

of the area. For the following evaluations, all grids of a climate zone were considered together, 

whereby the arid climates were combined to B and the temperate zones were divided into 

seasonal Csw and non-seasonal Cf. 
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3.2 Goodness of fit of A-D and S-W test for candidate distributions from SPI 

Table 3 shows the A-D and S–W rejection frequency (𝛼 = 5%), defined as the ratio of rejected 

distributions across all land surface grids in Central America and 12 month-fitted distributions 

for each tested accumulation period. The A-D and S-W test, which are used to test the quality 

of fit, each form two groups with respect to normality. For the A-D test the two groups can be 

divided into (1) long-accumulation distributions, of which the Logistic distribution dominates, 

and (2) short-accumulation distributions, of which the Gumbel distribution fits best. The 

rejection rate of the A-D test is generally low from SPI 3. The S-W rejection rate can be 

classified into the groups (1) accumulation periods within one year, of which the Gamma 

distribution dominates, and (2) very long accumulation periods, of which the Logistic 

distribution fits best. For the S-W test, the Gamma distribution performs best for all 

accumulation periods except SPI 24, where it still has the second-best distribution with 10.0 % 

rejection. Both A-D and S-W test classify the Logistic distribution as most suitable for SPI 24. 

Table 3: Rejection frequencies (%) for Anderson–Darling (A–D) and Shapiro–Wilk (S–W) test for all tested 

distributions and SPI accumulation periods over hole Central America 

 SPI 1 SPI 3 SPI 6 SPI 9 SPI 12 SPI 24 

 AD SW AD SW AD SW AD SW AD SW AD SW 

Gamma 9.9 21.7 1.6 8.2 0.3 6.2 0.1 6.7 0.1 7.3 0.4 11.0 

Gumbel 3.7 25.5 0.7 15.8 0.6 19.6 0.6 24.4 0.8 27.3 1.4 34 

Logistic 4.7 52.1 0.5 26.2 0.1 12.8 0 8.9 0 8.3 0 10 

Lognormal 9.6 22.5 1.8 10.3 0.5 8.1 0.4 8.2 0.4 8.3 0.6 11.7 

Normal 12.7 59.6 2.4 34.3 0.4 18.5 0.3 13.1 0.2 11.6 0.4 13.2 

Weibull 8.8 39.8 1.4 34.8 0.5 34.4 0.3 36.9 0.2 38.9 1.1 42.4 

Figure 4 and Figure 5 show the A-D and S–W rejection frequency (𝛼 = 5%) for each climate 

zone, defined as the ratio of rejected distributions across all land surface grids of the 

corresponding climate zone and 12 month-fitted distributions for each tested accumulation 

period. For Am, the rejection frequency of the A-D test at SPI 1 (0.34%) and SPI 3 (0.05%) is 

lowest for the Gumbel distribution. From SPI 6 on, the rejection frequency is too low, therefore 

no difference can be seen (Figure 4a). The S-W test shows the lowest rejection frequency for 

the Gamma function from SPI 1 to SPI 6, while from SPI 9 to SPI 24 the Logistic distribution 

has the lowest rejection rate. The Gamma distribution has the second lowest rejection frequency 

for these accumulation periods (Figure 4b). Also, for the climate zone Aw the rejection rate of 

the A-D test is lowest for the Gumbel distribution at SPI 1 and SPI 3. From SPI 6 on, the 

rejection rates are low again, except for SPI 24, where the Weibull distribution has a relatively 
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high rejection rate (1.94%) (Figure 4c). The rejection rate of the S-W test at SPI 1 is lowest for 

the Lognormal function (23.22%), while for all other accumulation periods the Gamma 

distribution has the lowest rejection rate (Figure 4d). The A-D test for climate zone Af 

consistently shows the best goodness of fit for the Logistic function (Figure 4e). Even in the S-

W test, the Logistic function has the highest goodness of fit from SPI 6 to SPI 24. Regarding 

SPI 1 (10.73%) and SPI 3 (8.56%), the rejection frequency of the Gamma distribution is lowest 

(Figure 4f). 

In general, the rejection frequency grows with an increasing accumulation period for the A-D 

and S-W test for this climate zone. B shows the highest overall rejection frequency of the 

goodness of fit tests. The rejection frequency of the A-D test at SPI 1 to SPI 6 is lowest for the 

Gumbel distribution. From SPI 9 on, the rejection frequency is too low to see a difference 

(Figure 5Figure 4a). The S-W test consistently shows the best fitting quality for the Gamma 

function (Figure 5b). The A-D test for climate zone Csw shows the best goodness of fit for the 

Gumbel function by SPI 1 (2.87%) and SPI 3 (0.07%) (Figure 5c). Candidate distributions for 

SPI form two distinct groups with respect to the S–W test. These groups can be divided into (1) 

accumulation distributions of 9 to 24 months, of which the Logistic distribution dominates, and 

(2) shorter-accumulation distributions (1 to 6 month), of which the Gamma distribution fits best 

(Figure 5d). With Cf, the rejection frequency of the AD test is very small (Figure 5e). The 

rejection frequency of the S-W test is best from SPI 1 to 12 for the Gamma distribution and for 

SPI 24 (3.79%) for the Logistic distribution (Figure 5f). 
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Figure 4: Rejection frequencies (%) for Anderson–Darling (A–D) and Shapiro–Wilk (S–W) test for all 

tested distributions and SPI accumulation periods over the tropical climate classes Am (monsoon), Aw 

(savannah) and Af (rainforest) 
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Figure 5: Rejection frequencies (%) for Anderson–Darling (A–D) and Shapiro–Wilk (S–W) test for all 

tested distributions and SPI accumulation periods over the tropical climate classes Am (monsoon), Aw 

(savannah) and Af (rainforest) 
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3.3 Rejection frequency of candidate distribution functions over the year 

For a better understanding of the rejection frequencies of the best distributions according to the 

A-D and S-W test (Gamma Figure 6, Logistic Figure 7, Lognormal Figure 8), these were 

mapped together with the average precipitation over the course of the year. The Gamma 

distribution for Am SPI 1 has a slight increase of the rejection rate for the months of January to 

April with 21.8% to 26.7%, in which the mean precipitation is lowest. For the following months  

up to and including November, the rejection frequency of the 24-month accumulation period is 

highest, but not prominent (Figure 6a). For Aw, a high rejection rate can be seen in SPI 1 (28.4% 

to 50.4%) and SPI 3 (10.4% to 25.1%) from January to April. In November (22.4%) and 

December (43.2%) the rejection rate of SPI 1 is increased. In these months, the lowest mean 

precipitation falls (Figure 6b). The highest values of the rejection rates of the climate zone Af. 

occur in SPI 24 with rejection rates between 20 and 30% (Figure 6c). The distribution of the 

rejection frequency in B is similar to Aw. They are high for SPI 1 (33.4% to 67.0%) and 3 

(5.4% to 17.0%) in the months January to April and for SPI 1 again in November (41.9%) and 

December (60.5%). The overall values are higher than for climate zone Aw. In addition, in this 

climate zone the average precipitation is lowest in the months with the high rejection rates 

(Figure 6d). Also climate zone Csw follows the pattern of Aw and B with the highest rejection 

rate of the Gamma distribution in January for SPI 1 (69.4%) (Figure 6e). Cf has consistently 

low rejection rates without abnormalities (Figure 6f). 

For Am the rejection frequency of SPI 1 (29.8% to 65.9%) and SPI 3 (17.6% to 31.6%) is 

increased from January to May and for SPI 1 again from September to December (20.5% to 

54.4%). The high rejection rates do not only occur during low mean precipitation but also in 

transitional periods where precipitation increases or decreases. The SPI 1 has the highest 

rejection rate in each month (Figure 7a). Aw has increased rejection rates for SPI 1 throughout 

the year (28.0% to 85.8%), from January to May (10.7% to 82.3%) also for SPI 3 and in April 

(36.1%)/May (24.8%) for SPI 6. In this case as well, SPI 1 has the highest rejection rate every 

month (Figure 7b). For climate zone Af, the rejection rate for SPI 1 is increased in January 

(39.4%) and February (45.5%). Otherwise the rejection rates are low for all accumulation 

periods throughout the rest of the year. Between April and July they are even lower than the 

rejection rates for Gamma and Lognormal distribution (Figure 7c). Climate zone B has 

increased rejection rates for SPI 1 throughout the whole year (51.8% to 98.9%) and for SPI 3 

from January to June (30.5% to 96.8%) as well as in November (35.5%) and December (32.2). 

The values for SPI 6 are also relatively high in February (49.2%), May (34.8%) and June 

(25.6%) (Figure 7d). The distribution of rejection rates for Csw is almost like B, SPI 1 has high 
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values (between 21.6% and 99.2%) except June/July and so does SPI 3 (between 18.7% and 

92.5%). The rejection rate of SPI 6 is higher in February (32.8%), April (32.8%) and May 

(41.1%) (Figure 7e). In contrast, Cf has almost consistently low rejection rates. They are only 

increased for the months of January (45.5%), February (31.8 %), June (41.8%) and July (34.5%) 

at SPI 1 (Figure 7f). With several values above a 90% rejection rate, the Logistic distribution 

has the highest overall rejection rates, especially the rejection rate in the climate zones B 

(maximum 98.9%) and Csw (maximum 99.2%). Generally, the rejection rates are higher when 

the mean annual precipitation is low, but high rejection rates also occur during transitions from 

wet to dry months and vice versa. 

The Lognormal distribution shows no abnormalities for the climate zone Am. The rejection 

frequencies remain equally low throughout the year (Figure 8a). For climate zone Aw, however, 

the rejection frequency is increased from January to May (between 24.7% and 38.6%) and from 

October to December (between 20.5% and 30.4%). The rejection rates are lower than in the 

Gamma and Logistic distribution but increased over a longer period than in the Gamma 

distribution. The increased rejection rates overlap with low mean precipitation but also with 

transition periods to higher precipitation (Figure 8b). The rejection frequency for Af is 

constantly between 20% and 30% for most months with the worst represented accumulation 

period of 24 months. The average rainfall in these climates has few fluctuations and no dry 

period (Figure 8c). B has a high rejection rate for SPI 1 from January to May (between 18.1% 

and 69.7%) and in November (56.3%)/December (54.5%), like climate zone Aw. For SPI 3 the 

rejection rate for December is higher than in the other months. Again, the high rejection rates 

for small accumulation periods coincide with periods of low precipitation (Figure 8d). The 

situation is similar for climate zone Csw (SPI 1 January to June between 25.7 and 70.1%), 

whereby the accumulation periods 1, 3, 6 and 9 have relatively high rejection rates in June 

(between 21.2% and 27.0%) and July (between 9.5% and 23.2%). These months have a high 

precipitation with 150 to 200 mm (Figure 8e). The rejection frequency for Cf is relatively 

constant. Only for the months of March (21.8%), August (18.2%), October (25.5%) and 

December (28.2%) is the SPI 1 slightly increased. The rejection frequency for Cf is relatively 

constant. Only for the months of March (21.8%), August (18.2%), October (25.5%) and 

December (28.2%) the SPI 1 is slightly increased. The SPI 3 is  marginally increased in July 

(17.3%) and August (13.6%) (Figure 8f). The results of the other distributions are displayed in 

Supporting Information Gumbel (Figure S 1), Normal (Figure S 2), and Weibull (Figure S 3) 

as well as the A-D test (Figure S 4 to Figure S 9). 
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Figure 6: Rejection frequency of the S-W test of the Gamma distribution per accumulation period during 

the year and the mean annual precipitation for the climate zones Am, Aw, Af, B, Csw and Cf 
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Figure 7: Rejection frequency of the S-W test of the Logistic distribution per accumulation period during 

the year and the mean annual precipitation for the climate zones Am, Aw, Af, B, Csw and Cf 
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Figure 8: Rejection frequency of the S-W test of the Lognormal distribution per accumulation period during 

the year and the mean annual precipitation for the climate zones Am, Aw, Af, B, Csw and Cf 
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3.4. SPI distribution fitting with AIC 

Due to the differences in rejection rates, especially for SPI 1, between dry (January, February, 

March) and wet periods (July, August, September), the best fitting distributions according to 

AIC were considered separately for these periods (Figure 9). For the dry period SPI 1, it is 

noticeable that on the west coast of Mexico and Honduras, as well as in Costa Rica and Panama, 

the Lognormal distribution predominates, which in total makes up the largest part with 42.7% 

of the land mass. For the climate zones Am and Aw, it is the most common distribution with a 

share of over 50% (Figure 10a and Figure 10c). On the east coast of Mexico and Nicaragua, the 

Gumbel distribution dominates. It is the third most common distribution with 17.2%. In the 

central area between the coasts and in Columbia, the Gamma distribution is the best fitting 

distribution. In total it has a share of 35.2% of the land mass and is therefore the second most 

common distribution. It has the highest compartment as the best fitting distribution for all 

climate zones except Am and Aw. In the wet season there is a similar pattern of distribution, 

but the Lognormal and Gumbel functions are less common. They occur mainly along the coasts 

of Mexico. A large part of the area is best represented by the Gamma distribution, 43.2% in 

total. The only climate zone where a different distribution fits better than the Gamma is Aw, 

where the Lognormal distribution fits best in 54.0% (Figure 10b). The Lognormal distribution 

also dominates the dry period SPI 3 with 39.7%, which is the best fitting distribution of the 

climate zones Aw (41.6%, Figure 10c), B (66.5%, Figure 11a) and Csw (75.5%, Figure 11c). 

The second-best fitting distribution is the Gamma distribution with 37.1%, which fits best for 

the climate zones Af (44.7%, Figure 10e), Am (48.4%, Figure 10a) and Cf (44.5%, Figure 11e). 

During the wet season SPI 3 (39.3%) and SPI 6 (32.2%) the Gamma distribution often is the 

most appropriate distribution for all climate zones. This is the case for SPI 6 in the dry season 

(39.0%) as well. Furthermore, for SPI 9 of this season the Gamma distribution fits most often 

with 26.0% of the land mass. However, for Af the Weibull distribution (20.0%, Figure 10e) and 

for Aw the Lognormal distribution (26.1%, Figure 10c) mostly fits. In SPI 9 of the wet season, 

the Gamma distribution is the most common distribution with 28.5% of the landmass. In 

contrast, the Af and Cf climate zones state the Gumbel distribution of 21.8% (Figure 10f) and 

29.1% (Figure 11f) respectively as the best fitting distribution. SPI 12 and SPI 24 of the dry 

season have the Lognormal distribution as the most appropriate distribution with 25.7% and 

23.7%. In climate zone B (Figure 11a), the Gamma distribution is only 25.8% (SPI 12) and 

23.0% (SPI 24). In the wet season, the Gumbel distribution at SPI 12 (25.35%) and 24 (23.27%) 

is the most suitable. In both cases, this is also true for the Af and Aw climate zones and for SPI 

12 for Cf. The best distribution for each climate zone differs from one another. The distribution 
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pattern is heterogeneous. Overall, the percentages of the best fitting distribution become smaller 

as the accumulation period increases. 

 

Figure 9: Best distribution of dry (January, February, March) and wet period (July, August, September) 

according to AIC for SPI 1, 3, 6, 9, 12 and 24 
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Figure 10: Best distribution according to AIC [%] per climate zone Am, Aw and Af of dry (January, 

February, March) and wet period (July, August, September) for accumulation period  1, 3, 6, 9, 12 and 24 
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Figure 11: Best distribution according to AIC [%] per climate zone B, Csw and Cf of dry (January, 

February, March) and wet period (July, August, September) for accumulation period  1, 3, 6, 9, 12 and 24 
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3.5 SPI values for different distributions on July 2014 

Figure 12 shows the SPI in July 2014 of accumulation periods 1, 6 and 12 for the Gamma, 

Logistic, Lognormal and the best fitting distribution, according to AIC. The spreading of 

drought corresponds to the distributions for the respective accumulation period. In SPI 1 almost 

the whole surface of Central America is affected, only parts of Northern Mexico and Costa Rica 

have positive SPI values. In contrast, the drought in SPI 6 is mainly concentrated in El Salvador, 

Honduras and Nicaragua. Southern parts of Mexico, Panama and Columbia are also affected by 

drought. Regarding SPI 12, a positive SPI predominates in Mexico, while drought is only found 

in Nicaragua, Panama and southern Honduras. A difference between the distributions is visible 

in the intensity of the drought. The Logistic distribution estimates the drought to be the least 

extreme, so the SPI values are higher than in the Gamma and Lognormal distribution. In terms 

of the Gamma and Lognormal distribution, it is noticeable that the Gamma distribution 

especially at SPI 1 classifies single points as extremes, while the Lognormal distribution 

represents a smoother transition. The SPI values of the best fit lies between Logistic and 

Gamma/Lognormal distribution. They estimate the drought to be stronger than the Logistic but 

weaker than the Gamma/Lognormal distribution. 
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Figure 12: SPI in July 2014 of accumulation periods 1, 6 and 12 for the Gamma, Logistic, Lognormal and 

the best fitting distribution, according to AIC 
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3.6 Severe and extreme drought from 2014 to 2016 

The drought from 2014 to 2016 is visualized as a drought area in % (threshold SPI < 1.5) with 

Gamma, Logistic, Lognormal and best fit distribution according to AIC (Figure 13). The 

analysis is carried out for SPI 1, SPI 6 and SPI 12. In terms of area, the drought in 2014 reaches 

two peaks in April and July. The largest area under drought follows in mid-2015, depending on 

the climate zone between May and August. The peak of climate zone Am is three months after 

Cf has reached the peak. From the main peak on, the area under drought slowly shrinks until it 

reaches a low point in November/December. In February 2016, another peak follows with steep 

ascent and descent. It mainly affects the Af and Cf climate zones. Overall, B and Csw are the 

least affected by the drought. The area below is the largest for Cf, Am and Af. With a maximum 

area under drought of 61.8% of Cf, the Gamma distribution estimates the drought as the largest, 

followed by Lognormal with 60.0%, best fit with 58.1% and finally Logistic with 47.2%. The 

area under drought at SPI 6 has a smaller peak in mid-2014, which extends from July to 

December 2014. The main peak is in September 2015 with a rapid increase and a slow decrease 

until the end of 2016. Also at SPI 6, climate zones B and Csw are the least affected by drought. 

The area under drought is larger for Cf and Af than for SPI 1, while B and Csw are less affected. 

The maximum peaks of Cf are very close together with 70.0% for Gamma, 69.0% for Logistic, 

70.9% for Lognormal and 70.9% for best fit. However, the area under drought for Am, Af and 

Aw is significantly smaller in Logistic distribution than the others. In SPI 12, instead of two 

separate droughts, there is one which has its peak in February 2016. In contrast to the shorter 

accumulation periods, there is a slower increase since July 2014 and a stronger decrease at the 

end of 2016. Particularly affected by drought are the climate zones Cf, Am and Af. Meanwhile 

B and Csw have almost no drought as for SPI 6. The Logistic distribution estimates the area 

under drought again to be smaller than the other distributions. The main peak of Cf is almost 

the same as for SPI 6, around 70%, except for the Logistic distribution with 60%. 

To better understand the differences between the individual distributions and the best fit 

according to AIC in an area under drought (AUD), Figure 14 and Figure 15 were created. were 

created. The deviation was calculated by AUD best fit minus AUD distribution, i.e. a positive 

deviation indicates that AUD is smaller than the best fit and a negative deviation shows that it 

is larger. They demonstrate the differences of the area under drought from Gamma in %, 

Logistic and Lognormal distribution to the best fit for each climate zone. Overall, the Logistic 

distribution has the highest deviation for all climate zones and all accumulation periods. The 

Gamma and Lognormal distribution have a similar deviation and fluctuate around 0 with up to 

5% of deviation. 
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Figure 13: Area und drought [%] (threshold: SPI < 1.5) of SPI 1, SPI 6 and SPI 12 for Gamma, Logistic, 

Lognormal and best fit per Grid distribution, according to AIC 
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Figure 14: Difference AUD [%] between a certain distribution and the respective best fitting distribution 

with accumulation periods 1, 6 and 12 for the climate zones Af, Am and Aw 
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Figure 15: Difference AUD [%] between a certain distribution and the respective best fitting distribution 

with accumulation periods 1, 6 and 12 for the climate zones B, Cf and Csw 
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4. Discussion 

This work found that in the assessment of drought conditions with the SPI, the standard-use 

Gamma distribution, which has been developed for the mid-latitude, is also appropriate for most 

of the tropical climate zones of Central America with some notable exceptions. The focus here 

is on the individual climate zones, which were calculated with the CHIRPS data which were 

also used for the SPI. Seasonal differences and differences between the accumulation periods 

of the climate zones are considered and discussed. Furthermore, differences in drought intensity 

between different distributions are analyzed. 

4.1 Local variations of the climate zones in Central America 

There have been many modifications proposed to the Köppen system (Essenwanger et al., 

2001). The classification locks nearly like Beck et al. (2018), where the definition of climate 

zones was also taken from, and Kriticos et al. (2012). Af is the wettest tropical climate zone, 

followed by Am and Aw (Beck et al., 2018). On the east coast the average annual precipitation 

is higher than on the Pacific coast (Bundschuh et al., 2007). This corresponds to the results that 

most parts of Central America are tropical climates with Am on the west coast and Aw on the 

east coast. Af occurs in Costa Rica and Columbia. Globally seen, the tropical A climate class 

by land area is the third largest at 19.0%, and Aw represents the second most common 

individual climate class by land area at 11.5% (Peel et al., 2007). Guatemala has a moderate 

Cwb climate at an altitude of 1500 m. All surrounding areas are located in tropical climates, as 

Peel et al (2007). Other Parts of Columbia have got temperate climate zones in the mountain 

areas. In Mexico, there is an arid climate in the very southern part of the country. Moving to 

the North, the climate becomes more and more temperate. The complex horizontal topography 

means that a coarse horizontal resolution may have difficulties in describing the surface 

properties of Central America (Imbach et al., 2018). Beck et al (2018) use a 0.0083° resolution 

(approximately 1 km at the equator), which is smaller than the one used here with 0.25°x0.25°. 

In order to obtain suitable information, it would be useful to use the CHIRPS data in the lowest 

possible resolution (0.05°x0.05°). 
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4.2 Best fit of candidate distributions for Central America with A-D and S-W test 

In general, the rejection rate for the A-D test in this study is very low compared to other studies 

(e.g. Blain et al. 2018; Stagge et al., 2015) and often below the significance level. A possible 

reason is that, in difference to this work, bootstrapping by Stagge et al. (2015) was used Due to 

this procedure, true uncertainty bounds could be produced. Furthermore, Stagge et al. (2015) 

used daily precipitation data, where the resulting accumulated values follow a similar right 

skewed Gamma distribution with a less extreme tail. This may result in different results with 

higher rejection frequencies, because the distribution of the extreme values is shifted by 

bootstrapping. The significance level of the A-W test therefore can be classified as low. The 

best distribution for SPI 1 over whole Central America is the Gumbel distribution for the A-D 

test, for the other accumulation periods the Logistic distribution is recommended. Stagge et al. 

(2015) have found that for short accumulation periods, the Weibull and Gumbel fits best. In the 

case of Stagge et al. (2015), the Weibull function was dominant, whereas in this work the 

Gumbel distribution is clearly more appropriate, according to A-D test. On the other hand, the 

S-W test recommends the Gamma distribution, except for SPI 24 where the Logistic function 

fits best. The results of the A-D test differ from previous studies, while the results of the S-W 

test confirm that the Gamma distribution describes wet and dry climate regions well (Blain et 

al., 2018; Guenang et al., 2019; Lloyd-Hughes and Saunders, 2002; McKee et al., 1993; Naresh 

Kumar et al., 2009; Stage et al., 2015; Sienz et al., 2012; Touma et al., 2015). However, the A-

D test is inferior to the S-W test (Blain et al., 2018), which is why the S-W test can be considered 

more meaningful. In fact, the Gamma distribution has a relatively flexible shape parameter 

suitable for describing a range of accumulated precipitation distributions (Stagge et al., 2015; 

Wang et al. 2019). This also explains why the Gamma distribution for certain cases in this study 

best describes the values. The results of the S-W test for SPI 1 and SPI 24 are different from 

the studies mentioned above. In contrast to other studies, the Gamma distribution is also 

recommended for SPI 1 rather than the Weibull distribution. SPI 24 was not examined by the 

studies pointed out above. The climate in Europe is different from the tropics, in Central 

America the climate is mostly humid and tropical while Europe has a temperate climate (Beck 

et al., 2018) and could therefore produce different results. The Weibull and Gumbel distribution 

has the ability to model strongly distorted precipitation distributions, where most values are 

close to zero (Stagge et al., 2015). Due to the high humidity in the tropical climates of Central 

America, precipitation is rarely close to zero, which means that the Gamma and Weibull 

function lose their advantage over the Gamma distribution. 



- 46 - 

 

Regarding the climate zones individually, it is noticeable that for shorter accumulation periods 

(1 to 3 months) the Gumbel distribution is often recommended by the A-D test. This is true for 

the climate zones Am, Aw, B and Csw and is consistent for SPI 1 with the observation of Blain 

et al. (2018) and Stagge et al. (2015), who found the lowest rejection frequency for the Weibull 

and Gumbel function. The reason for this is the ability of the Weibull and Gumbel distributions 

to model strongly distorted precipitation distributions, where most values are close to zero 

(Stagge et al., 2015). The higher scored S-W test, however, especially emphasizes the Gamma 

distribution for shorter accumulation periods, as most previous studies did (Blain et al., 2018; 

Guenang et al., 2019; Lloyd-Hughes and Saunders, 2002; McKee et al., 1993; Naresh Kumar 

et al., 2009; Stage et al., 2015; Sienz et al., 2012; Touma et al., 2015). It is noticeable that for 

the climate zones Am, Af, Csw and Cf, the Logistic function has the lowest rejection rate at 

higher accumulation periods. This is not found in any other study so far. However, most of the 

other studies only consider accumulation periods between 1 and 12 months (Blaine et al., 2018; 

Stagge et al. 2015), instead of 1 to 24 months as considered in this case. Another notable feature 

is that the Lognormal distribution at SPI 1 of climate zone Aw has the lowest rejection rate for 

the S-W test; Wang et al. (2018) also found a best fit with the Lognormal distribution. 
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4.3 Variations of distribution fitting over the year 

A high acceptance rate can be observed at the 6-, 9-, 12-, 24-month scales. For the 1 and 3-

month scale, a relatively high acceptance was observed from May to October for all climate 

zones except B. Each of the three distributions show high rejection rates for the accumulation 

periods 1 and 3 in the dry period of the seasonal climate zones Am, Aw, Csw and the arid B. 

This is consistent with the results of Wang et al. (2019), who found low acceptance rates of the 

K-S test for accumulation period 1 for several months. Accumulation periods 3, 6, 9, 12 and 

24, however, had very high acceptance rates (Wang et al., 2019). The rejection rates for the 

Logistic distribution are lower than in the Gamma but increased over a longer period for climate 

zones Aw, B and Csw. In contrast to the Gamma distribution, the rejection frequency for the 

Logistic distribution is therefore also increased in the transition months between the rainy and 

the dry season. The Logistic distribution shows the highest rejection frequencies. Periods with 

zero precipitation make it difficult to adjust the probability distribution for the SPI (Wu et al., 

2007). The non-normally distributed SPI is caused by a high probability of cases with null 

precipitation represented in the mixed distribution and used in the SPI construction. 

Furthermore, the limited sample size in dry areas and during dry periods reduces the reliability 

of the SPI values (Wu et al., 2007). Therefore, in arid locations or during dry seasons, when the 

cumulative probability of zero precipitation is high, the SPI cannot indicate the occurrence of 

drought (Wu et al., 2007) or indicate the end of a drought period when no precipitation is present 

(Blain, 2012). This is consistent with the higher rejection rate in periods with less precipitation 

in this thesis.  

Stagge et al. (2015) did not find a seasonal pattern among the rejection rates for different 

accumulation periods, which allows modeling the precipitation deficit of the whole year with a 

single distribution. However, Pieper et al. (2020) found larger seasonal differences in the 

performance of the investigated candidate PDFs, similar to the results in this thesis. In June and 

July, several accumulation periods for Gamma distribution and especially Lognormal 

distribution have an increased rejection rate. This may be due to the fact that the seasonal 

climate zones Cs (dry summer) and Cw (dry winter) (Beck et al., 2018) were combined in this 

study. The rainy period of Cs is coincident with the dry period of Cw and vice versa, which 

makes the precipitation data more scattered than when looking at the climate zones individually. 
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4.4 Best fit for Central America with AIC for wet and dry season 

Based on the previous results, the best fitting distribution, calculated with AIC, was determined 

for the dry and wet season. To determine the best performing PDF, the use of relative ratings 

such as the AIC instead of A-D and S-W test is recommended (Stagge et al., 2015; Sienz et al., 

2012). For the wet season, the results are consistent with the S-W test. Overall, the Gamma 

distribution fits best for accumulation periods 1, 3, 6 and 9. For every climate zone, the Gamma 

distribution is the best fit for accumulation periods 3 and 6 at least. Many other papers 

recommend the two parameter Gamma distribution for different regions of the world, mostly 

for accumulation periods between 3 and 12 month (Blain et al., 2018; Guenang et al., 2019; 

Lloyd-Hughes and Saunders, 2002; McKee et al., 1993; Naresh Kumar et al., 2009; Stage et 

al., 2015; Sienz et al., 2012; Touma et al., 2015). The best fit of the climate zones varies between 

Normal (Am), Gumbel (Aw & Af), Gamma (B) and Lognormal (Csw & Cf) for accumulation 

period 24 months. Also, the area to which the best fitting distribution applies decreases in 

percentage with increasing accumulation period. This is in line with the recommendation of 

Guenang et al (2019) to choose the best fit distribution function at each grid point from an 

accumulation period of 12 months on in order to expect good SPI results and thus a better 

description of the drought. 

The result of this work differs from these papers, because it classifies the Gamma distribution 

as best fit even for short accumulation periods (1 month). The Gumbel distribution is expected 

as the best fit for accumulation period 12 and 24 for climate zone Aw, Af and the overall result. 

This is not consistent with previous studies, which showed the Gumbel or Weibull distribution 

to be suitable for short accumulation periods (Stagge et al., 2015). Typically, during 

accumulation periods of 1 or 2 months, strongly sloped distributions with a sharp, asymptotic 

density near the zero limit occur, which are not best represented by the Gamma distribution 

(Stagge et al., 2015). 

For the dry period, the AIC indicates that the Lognormal distribution is best suited for short 

accumulation periods (1 and 3 months) and for long accumulation periods (12 and 24 months). 

In Europe, the log-normal distribution does not fit as well as the Gamma distribution (Llyoyd-

Hughes & Saunders, 2002, Stagge et. al., 2015), this shows the relevance of this study. Because 

in different regions of the world, different distributions fit best (Blain et al., 2018; Stage et al., 

2015; Sienz et al., 2012; Touma et al., 2015), it was important for Central America to make a 

new study. For medium accumulation periods (6 and 9 months), the Gamma distribution fits 

best, but the Lognormal distribution occupies second or third place, confirming the result of the 
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S-W test, which states that the rejection rates for the Lognormal distribution are lower than for 

Gamma, especially for the dry months of seasonal climates. This can also be noticed looking at 

the individual climate zones: for the seasonal climate zones Am, Aw and Csw the Lognormal 

distribution fits best for most accumulation periods. Angelidis et al. (2012) provide similar 

results, the study concludes that in Portugal for a 12 or 24 months accumulation period the 

Lognormal or Normal PDF can be used instead of Gamma. Gamma as well as Lognormal and 

Normal function lead to almost the same results. For the non-seasonal climate zones Af, B and 

Cf, the Gamma distribution fits best for most accumulation periods, especially for the shorter 

ones. The comparison of several seasons is more difficult if differences occur solely due to the 

adequacy of the transforming distribution (Sienz et al. 2012). 
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4.5 Differences in the severe of the drought 2014 to 2016 

The reported distributions Gamma, Logistic, Lognormal and the most appropriate distribution 

for each grid according to AIC (best fit) show differences in the intensity of drought 2014 to 

2016 for the investigated accumulation periods 1, 6 and 12. Gamma and Logistic estimate the 

drought to sometimes be weaker and mostly be stronger than the best fit. The choice of PDF 

can lead to overestimated or reduced SPI values and thus to potentially incorrect estimates of 

the timing, intensity and duration of droughts (Guenang et al., 2019; Stagge et al., 2015). SPI 

values calculated with the two-parameter Gamma distribution can underestimate the intensity 

of dryness and wetness when precipitation is very low or very high in other regions of the world 

(Kumar et al., 2009; Sienz et al., 2012). The deviation from best fit is greater for the Logistic 

distribution than for Gamma and Lognormal over all climate zones and accumulation periods. 

It underestimates the severity of the drought in relation to the best fit. Gamma and Lognormal 

distribution have very similar deviations from best fit. Also, in Angelidis et al. (2012) Gamma 

and Lognormal function give almost the same results. 

For the short accumulation periods (1 and 6 months) the area under drought fluctuates more for 

all climate zones. For small accumulation periods (3 or 6 months), the SPI often moves above 

and below zero. If the period is extended to 12 or 24, the SPI reacts more slowly to changes in 

precipitation. Periods where the SPI is negative and positive become numerically fewer but 

longer in terms of time (McKee et al., 1993), which is consistent with the result of this work. 

On small time scales, each new month has a large influence on the period sum of the 

precipitation. The larger the accumulation period, the smaller the influence of each new month 

on the total sum can be estimated (McKee et al., 1993). 

Chen et al. (2007) observed the largest area of severe drought especially for the 2014 primera 

season (April–August) for data during 2001–2014. This study also observed two peaks in the 

AUD between April and August 2014, but AUD in in mid-2015, depending on the climate zone 

between May and August. Drought Category severe drought with SPI Values -1.50 to – 1.99 

only occur in 4.4% of time and extreme drought SPI Value ≤ -2 in 2.3 % of time (McKee et al., 

1993). In the years 2015 to 2016, however, more than 50% of the time there were severe and 

extreme droughts on up to 60% of the area per climate zone. This means that the intensity of 

the drought exceeds expectations and shows how extraordinarily strong this drought period was. 
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5. Conclusion 

The Standardized Precipitation Index (SPI) is a well-established and important index already 

used to quantify and compare meteorological drought events around the world. It evaluates and 

characterizes the precipitation ratio of a certain time period in relation to the respective normal 

values (Stagge et al.,2015). While distribution recommendations have already been made for 

various regions, Central America has not been considered yet in the existing literature. It is 

important to check the accuracy of fit when working in a firstly inspected region or with a new 

data set, because improper probability distributions have the potential to distort drought index 

values. This study evaluated the choice of an adequate univariate probability distribution to use 

in the normalization of SPI values in Central America based on three research theses. The first 

assumption evaluated with this thesis was: 

I. To derive the SPI, the Gamma (accumulation period ≥ 3) and Weibull distribution 

(accumulation period < 3) functions show the best performance for each of the tropical 

climate zones in Central America. 

This thesis cannot be confirmed, since the overall Gamma distribution fits best for both short 

and long accumulation periods. There are slight differences between the results of the A-D, S-

W test and AIC. The AIC is the highest scored due to the use of relative ratings and is used for 

the recommendations as recommended by Stagge et al. (2015) and Sienz et al. (2012). There 

are differences in the seasons, which also disproves the second thesis: 

II. There are no seasonal differences in the adjustment of candidate distributions for the 

SPI for different accumulation periods in the climate zones of Central American. 

For the wet season (January to March) the Gamma distribution has a broad effectiveness in 

Central America and is best suited for accumulation periods of 1 to 12 months, with a 

consistently good fit across the entire width of the climate zones. This is consistent with the 

conclusions of previous studies. In the wet season, from accumulation period 1 month to 12 

months, the Gamma distribution is recommended for calculating the SPI. For very long 

accumulation periods in general, the Gumbel distribution is better, but the result varies between 

the climate zones. In some events, the Gumbel (Aw & Af), Lognormal (Csw & Cf), Gamma 

(B) or Normal (Am) fits best. The area, to which the best fitting distribution applies, decreases 

in percentage with increasing accumulation period. This suggests that for very long 

accumulation periods, the best fit of the respective climate zone should be used to calculate the 
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SPI and not one distribution for all. Only for long accumulation periods, these distributions 

dominate during the wet period. For shorter accumulation periods they are irrelevant. 

The evenly humid Af and Cf climates do not have seasonal differences, which can be concluded 

from the fact that the rejection rates are consistently good. Therefore, in the dry season (July to 

September) the dominant distribution is dependent on climate zones. In the non-seasonal 

climate zones Af, B and Cf, the Gamma distribution again fits best, especially for the 

accumulation periods 1 to 6 month. For longer accumulation periods, the best distribution varies 

between Gumbel, Gamma and Lognormal distribution, as it does in the wet period. For the 

seasonal climate zones Am, Aw and Csw the Lognormal distribution dominates for short and 

long accumulation periods. For medium accumulation periods (3 and 6) the Gamma distribution 

is best suited, but the Lognormal distribution follows on the wide space. With regard to the last 

thesis, it is possible to recommend the Lognormal distribution for all accumulation periods in 

the dry period of the seasonal climate zones. Finally, the thesis puts forth, that: 

III. Various distributions estimate the area under drought (SPI < 1.5) differently compared 

to the best fit (for each grid cell, the best fit distribution according to AIC is used to 

calculate the SPI). 

The Logistic distribution has the largest deviation to the best fit compared to the Gamma and 

Lognormal distribution. The difference to the AUD of best fit is similar for Gamma and 

Lognormal distribution, considering the seasonal climates Am, Aw and Csw the Lognormal 

distribution fits marginally better than the Gamma distribution. This reinforces, that the 

Lognormal distribution is recommended for all accumulation periods in the dry period of the 

seasonal climate zones. Based on the intensity of the drought of 2014 to 2016 over time, it can 

be considered exceptionally strong. 

The last step is an analysis of open questions. This study deals with the implementation of 

drought monitoring with one considered drought period, but drought characterization is also 

important. It would be interesting to analyze droughts over the whole time series to better 

estimate their intensity, for example, a drought ranking could be created and trends analyzed. 

With regard to current studies, a comparison with three parameter PDFs, especially 

exponentiated Weibull distribution would be an interesting continuation of this study. Pieper et 

al. (2020) evaluate SPI time-series over the global land area and for each continent individually 

during winter and summer, comparing two parametric PDFs with three-parametric ones. They 

recommended the use of the exponentiated Weibull distribution, which maximizes the 
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normality of SPI time-series in observations and simulations. Another aspect to consider is the 

comparison and distribution fitting with the Standardization Precipitation Evaporation Index 

(SPI). Many previous studies considered the SPI and SPEI in one work (e.g. Blain et al., 2018; 

Stagge et al., 2015; Wang et al., 2019), the advantage of the SPEI is the inclusion of the 

evaporation, which is not important in the SPI. 

All in all, there is a difference between the accumulation periods 1 to 12 months and the very 

long accumulation period 24 months as well as a difference between the dry and rainy season 

of the seasonal climate zones Aw, Am and Csw. The Gamma distribution is recommended all 

year round for the non-seasonal climate zones Af, B and Csw and in the wet season of the 

seasonal climate zones Aw, Am and Csw of accumulation period 1 month to 12 months. For 

the very long accumulation periods (24 months) the SPI should be calculated with the most 

appropriate distribution for each grid cell. The Lognormal distribution is recommended for all 

accumulation periods in the dry period of seasonal climates. 
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IX Supplement 

 

Figure S 1: Rejection frequency [%] of the S-W test of the Gumbel distribution per accumulation period 

during the year and the mean annual precipitation for the climate zones Am, Aw, Af, B, Csw and Cf 
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Figure S 2: Rejection frequency [%] of the S-W test of the Normal distribution per accumulation period 

during the year and the mean annual precipitation for the climate zones Am, Aw, Af, B, Csw and Cf 
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Figure S 3: Rejection frequency [%] of the S-W test of the Weibull distribution per accumulation period 

during the year and the mean annual precipitation for the climate zones Am, Aw, Af, B, Csw and Cf 
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Figure S 4: Rejection frequency [%] of the A-D test of the Gamma distribution per accumulation period 

during the year and the mean annual precipitation for the climate zones Am, Aw, Af, B, Csw and Cf 
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Figure S 5: Rejection frequency [%] of the A-D test of the Gumbel distribution per accumulation period 

during the year and the mean annual precipitation for the climate zones Am, Aw, Af, B, Csw and Cf 
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Figure S 6: Rejection frequency [%] of the A-D test of the Logistic distribution per accumulation period 

during the year and the mean annual precipitation for the climate zones Am, Aw, Af, B, Csw and Cf 
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Figure S 7: Rejection frequency [%] of the A-D test of the Lognormal distribution per accumulation period 

during the year and the mean annual precipitation for the climate zones Am, Aw, Af, B, Csw and Cf 
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Figure S 8: Rejection frequency [%] of the A-D test of the Normal distribution per accumulation period 

during the year and the mean annual precipitation for the climate zones Am, Aw, Af, B, Csw and Cf 
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Figure S 9: Rejection frequency [%] of the A-D test of the Weibull distribution per accumulation period 

during the year and the mean annual precipitation for the climate zones Am, Aw, Af, B, Csw and Cf 


